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We consider electromagnetic waves with narrow transition regions between the initial and 
final states, and in particular, a converging cylindrical wave. It is found that as such a wave 
converges its amplitude increases without bound. A qualitatively new phenomenon, cumula­
tion, is found. This is the occurrence of infinitely strong fields, at finite distances from the 
axis, on the front of the wave reflected from the cylindrical axis. This property is not pecu­
liar to electromagnetic phenomena, but is related to the cylindrical geometry. Acoustical 
waves have the same property, but for them this solution is valid only for weak waves, where­
as this restriction does not apply to electromagnetic-field waves. 

1. FORMATION OF WAVES AND THICKNESS OF THE WAVE FRONT 

CoNSIDER semi-infinite space filled with a perfect conductor and bounded (along the x = 0 plane) by a 
vacuum with a stationary magnetic field Hoy. Let a plane shock wave be emitted by this conductor, with 
its whole surface instantaneously attaining the velocity u toward the field; then an electromagnetic shock 
wave with velocity c propagates into the field. 

Since the field flux between the surface of the ideal conductor and a line at x = oo is constant, the mag­
netic field satisfies an equation similar to the equation of conservation of matter: 

H0c = H!(c-u). 

Here H1 =Hoy, the field behind the wave. Thus H1 =H0c/( c- u). When H changes on the wave, so 
does E, and ~Ez = -~Hy(where ~ denotes the change at the wave front), so that behind the front E 
= -H0u/(c- u). 

We note that in the coordinate system moving with the moving wall, there is no electric field. Indeed, 
on going from one coordinate system to .another, the Lorentz force is conserved, that is 

E +[uxH]/ c = E' +[u'xH'] /c. 

In the coordinate system moving with the moving wall (denoted by a prime) u' = 0, so that 

E'=E+_1-[uxH]=-k Hou +-~uH1 =0. c c-u c 

Let us further calculate the pressure of the field on the moving wall. The pressure due to the magnetic 
field H0 on the wall is Po= HV81r, so that the pressure on the moving wall is p1 = H' 2/81r. On going 
over from one system of coordinates to another, the quantity H2 - E 2 is conserved, so that H'2 - E'2 

=Hi - Ei, and since E' = 0, we have 

PI= (Hi-Ei)/8TC. 

Let us evaluate the thickness of the electromagnetic-field wave front due to a shock wave from a per­
fect conductor. This thickness does not vanish, since the front of the shock wave moving with a velocity 
D::::: 106 em/sec is spread over a thickness of the order of the lattice constant a ::::: 10-8 em of the con­
ductor, or over a time of the order of T = a/D ::::: 10-14 sec. This causes waves spread out in the vacuum 
over a thickness of the order of R. ::::: TC ::::: 3 x 10-4 em, which is extremely small. In actuality the spread 
is determined by the finite electrical resistance of real conductors. This may be of several orders great­
er than the above; let us consider it in more detail. 

In order to evaluate the thickness of the wave front in the vacuum, let us first consider the wave in the 
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conductor, and then knowing the time characteristic of its spread we can find the thickness of the wave in 
the vacuum. 

Consider a shock wave moving through a real eonductor containing a field H0 , this shock wave in­
creasing the density of the material by a factor o. Let us assume that behind the wave the matter every­
where has the same velocity and density. Let us consider the electromagnetic field accompanying this 
wave. 

In the coordinate system in which E is along the z axis, H is along the y axis, and j is along the 
z axis (where j is the current density), Maxwell's equations with € = p, = 1 can be written 

_!.._dE = dH _ 4rt . _!.._ dH =dE . = I.(E + uH). 
c dt dx c 1' c dt dx ' 1 c 

(1.1) 

Here A. is the conductivity, and u is the mass velocity of the substance (in front of the shock wave 
u = 0). 

For a steady wave propagating with a velocity D, the quantities H, E, and j depend only on q = x 
- Dt. Then Eq. (1.1) leads to 

_ _ I!_ dE = ~!!_ _ 4 11~ (£ + uH) _ !2_ dH _ ~.E._. 
c dq dq c c , c dq - dq • 

From this we obtain 

d2E 1 dq 2 =(-dE 1 dq) 4 1tt. (D- u) 1 (c2 - D 2). 

Let us write the solution of this equation in the form 

The second of Eqs. (1.2) gives 

£=1 A1 exp{--:2~~2 q}+B1 for q>O, 

A2 exp}-2'1t~}~-;.u) q}+B2 for q<O. 

c ( { 4rt:t. D }) H1 +-DA1 1--exp- c2 -D2 q for q>O, 

c ( { 4rt:f.(D-u) }) H1 +DA2 1--exp- c•-D2 q for q<O. 

(1.2) 

(1.3) 

(1.4) 

Here H1 is the field on the shock front. It is obvious that H cannot change discontinuously on the front, 
since this would mean an infinite current density, which cannot occur if A. is finite. 

The solution given by (1.3) and (1.4) contains five constants which are determined by the following con­
ditions: in the unperturbed region H ( q = + oo) = H0 , and E ( q = + oo) = 0; far behind the front E ( q = - oo) 
-1 oo ; on the shock wave E is continuous, or E ( +0) = E ( - 0). 

The last condition can be obtained by considering a rectangular circuit of dimension a by b, whose 
sides of length a are parallel to the wave front. l~or such a circuit 

+co co 

~ (~jdl)dt=const ~ ~~ dt=const~<l>, 
-oo -00 

where 4> is the magnetic flux. But ~ jd 1 = j 1a - j 2a (where j 1 is the current in the left member, and 
h is that in the right member of length a of the eircuit, and there is no current in the members of 
length b). But in view of the fact that the process: is stationary, 

+c.o +oo 

~ j1 dt = ~ j 2 dt, i.e. ~<I> = 0, 
-co -co 

so that finally H ( - oo) = Hoa; this means that far behind the wave front the magnetic field strength has 
increased by the same factor as the matter density. 

Without going through the simple operations, we present only the final result: 

H={H 0 [1+(o-l)e-qJl] for q>O, E={-(Dic)H0 (o·-l)e-qfl fo_r q>O. 
H/' for q<O, -(Dic)H0 (o-l) for q<O. (1.5) 



E L E C T R 0 MAG N E TIC - F IE L D S H 0 C K WAVE S AND THE I R C U M U LA T I 0 N 34 7 

The total current is 
+oo 
\' c2- D2 

I= j jdq=-H0 (o-1);mc· 
-00 

As can be seen from (1.5), the perturbation in the magnetic field leads the shock wave by an effective 
length R. or a time T = R. /D. On coming to the boundary of the conductor and the vacuum, this wave causes 
an electromagnetic wave in the vacuum with the same characteristic time of spread, or with a front thick­
ness* b = rc. For the usual conductors this quantity is much greater than the spread related to that of the 
shock wave in the matter itself; for instance, in copper (at room temperature A.= 5.8 x 1017 sec-1 ) b 
=14.8 em (we have taken D = 5 km/sec). We note that the thickness R. of the wave in the copper itself is 
2.5JJ.. 

The wave front can be decreased greatly by cooling the conductor to decrease its resistance. For in­
stance, when copper is cooled to -253°C, its resistance is decreased by a factor of 170, and the spread 
of the wave in the vacuum decreases to 14.8 cm/170 = 0.9 mm. 

We note that the total current I accompanying the shock wave in the conductor is independent of the 
conductivity, and that behind the shock front the current vanishes, so that the conductivity plays no role 
behind the shock wave. Thus if one is able to achieve a narrow front by increasing the conductivity by 
cooling, this result will not be affected even if the high conductivity is destroyed by the shock wave itself 
(for instance, because of heating). 

In the following sections we shall consider a converging cylindrical electromagnetic-field wave, assum­
ing it to be a mathematically rigorous discontinuity. 

2. CONVERGING CYLINDRICAL FIELD WAVE 

In principle a converging wave can be obtained by suddenly turning on a circular current simultaneously 
over the whole surface of a cylinder, by reflecting a plane or diverging wave from a curved mirror, or by 
moving a cylindrical conducting surface in a magnetic field towards or away from its axis. 

o~----------~--~r 

FIG. 1. The forma­
tion of a converging 
cylindrical electromag­
netic-field shock wave. 
The vacuum lies to the 
left of the heavy line. 

In the case of cylindrical symmetry, Maxwell's equations ( H is parallel to 
the x axis, and E is circular, i.e., perpendicular to r and x) become 

1 aE aH 1 aH 1 a (rE) 
c at - ar ' c at - - ----ar · (2.1) 

Eliminating H or E from these equations, we obtain, respectively, 

_1_ ~2£ _ _1_ [_1_ a (rE)] = O 
c2 at2 ar r ar ' 

(2.2) 

_1 a2H _ -~- a_ [r aff_] = O. 
c2 Ul 2 r ar ar J (2.3) 

The equation for H is simply the wave equation for the cylindrical case. That 
for E is not the wave equation. 

Let us consider the variation of the cylindrical wave amplitude as it moves 
towards the axis, first treating a wave within a cylindrical cavity of radius Rc 
in an ideal conductor. The motion of the conductor and the wave in this case are 
shown in Fig. 1. 

The total flux of H in the cavity is conserved, so that 

Rc 

<T> = 2.-: ~ rH dr=const. 
0 

*Here we have obtained only the width in the vacuum corresponding to the field perturbation in front 
of the shock wave. The amplitude of this part of the wave and its profile can be found only by the complete 
solution of the problem of the wave leaving the conductor. 
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Differentiating this identity twice with respect to time, using (2.3), and dRf /dt = - c, and dRc /dt = U 
(where Rf is the radius of the wave front), gives 

[2R d (H£.- Ho) - (H -H)] + 2R (a_H_) + d (HcRcU) = 0 
c f dt c f o c c iJr c dt 0 

The second group of terms, which refers to th•e boundary, vanishes. This is easily seen by considering 
a field due not to a sharp shock wave, but to one which is somewhat spread out. Then the first group of 
terms vanishes, and the second, which contains only quantities referring to the boundary, does not change.* 

Therefore the first group also vanishes, which leads to 

r 

H f - H 0 = const 0 R{:'f,o (2.4) 

Thus the amplitude of the converging cylindrical wave increases without 
bound as R.f11Z in its approach toward the axis. We have obtained this result 
for the special case of a wave within a cavity in an ideal conductor, although it 
is valid for any cylindrical shock wave, since waves from the surface of the 
cylinder do not catch up to the shock wave; therefore the behavior of the wave 
amplitude on the front is determined entirely by its magnitude (that is the initial 
amplitude at the point :at which the wave is formed) and is independent of other 
field changes on the boundary of the cylinder. 

On the cylindrical wave front Ef - Eo also changes according to 

E f- £ 0 = cons.t R£'1'0 (2.5) 

Equations (2.4) and (2.:5) are not approximations valid only for large or small 
amplitudes; they describe the behavior of a field with the same accuracy as do 
Maxwell's equations. 

For a complete deseription of H and E behind the shock wave we must 
FIG. 2. solve (2.2) and (2.3). 

Henceforth we shall consider only the particular solution corresponding to 
a converging wave, whllch describes the limiting behavior of a field close to the 

axis and close to the time of focusing, which means that we shall solve the self-similar problem. 

3. SELF-SIMILAR SOLUTION FOR A CONVERGING CYLINDRICAL WAVE 

Since we know how the wave amplitude varies, we may immediately assert that the self-similar solution 
is of the form 

(3.1) 

where T = ct/r. Here t is the time calculated from the instant of focusing(before focusing, t < 0), and 
2o and U0 are the amplitudes of the electric and magnetic fields on the wave front at the time when the 

wave front is at a distance r 0 from the axis. For a wave moving towards the axis, U0 = - 2 0 • On a 
converging wave front, T = - 1, so that 

e(-1)= 1, h(-1) = 1. (3.2) 

A diagram of the phenomenon in the r, t plane is shown in Fig. 2. 
Inserting (3.1) into Maxwell's equations (2.2) and (2.3), we obtain equations for the new functions 

e" ( 1 - 't2) - 2'te' + 3e I 4 = 0, h" ( 1 - 't2) - 2'th' - h 1 4 = 0 0 (3.3) 

We solve these equations by means of a power series in ( 1 + T) with the conditions (3.2) for the interval 
- 1 :s T :s 1 (between the incident and reflected waves), obtaining 

(3.4) 

*This reasoning is due to B. P. Mordvinov. 
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(for n = 0 we take ( 2n - 1) ! ! = + 1). 
These series converge for T < 1, and diverge for T :o:: 1, so that as a result of reflection from the 

axis there arises a wave whose amplitude is unbounded not only at the cylindrical axis, but also at a finite 
distance from it. 

Such a cumulation is a qualitatively new phenomenon. In converging waves previously considered, un­
bounded amplitudes arose only for small times and in small regions of space (at the focus). In our case, 
however, unbounded amplitudes arise at all points of space, not only at the cylindrical axis. 

We note that nowhere in the solution have we assumed that we are dealing with a compression wave, 
so that all the results obtained refer also to a rarefaction wave, which can be formed, for instance, by the 
sudden expansion of a cavity in a conductor. In this case the field strength on the wave front Hf = H0 - ~H 

will decrease as the amplitude ~H increases, vanishing at some distance r and thereafter approaching 
- oo. 

We wish, further, to find a solution of the equations for e and h in the interval 1 < T < oo , that is 
behind the wave reflected from the axis. We write this solution in the form of a power series in 1/T with 
the condition e = h = 0 when T = oo (that is with the condition E ( r = 0) =f. oo and H ( r = 0) =f. oo), 

obtaining 

I 
I 

2 I 

/! 
~ 

,/ 
I 

--; I - I 

~ I 
I 
I 

17- 1L I I '0 -Tf n 1-r: +f,t. 

\ 
""" 

a0 ~ (4n+1)!! 1 h=~[l + ~ (4n-1)!!_11· 
e = ~ n~o 24nn!"(n + 1)! -'t"2n' 't"'l• =l 24n (n!)' 't"2n 

(3.6) 

These series converge for T > 1, but diverge for T 5 1, so that 
close to the reflected wave and behind its front E and H increase 
without limit. 

The as yet unknown quantities Ro and b0 can be obtained from 
the following two conditions: first, from Maxwell's equations, and 

~ I 

~ I 
I 

~ :.;:._ ;:; second, from the condition that e + h are conserved on passing 
through the wave front reflected from the axis (see below). Let us \ 

f 
(} 1\. r: Jl 

\ j!lf7: v- 0 consider each condition separately. 
I -JA i /---(27:} " 

\l 
-1 ,:, 

~~e-#Lnlt-r:/+17,! 7 

I 

FIG. 3. The self-similar solu­
tion for a converging cylindrical 
electromagnetic-field wave: H 

Inserting E and H in their self-modeling form (3.1) into the 
second of Maxwell's equations (2.1), we obtain 

dhfd" + Tdef d"- ej2 = 0. 

Inserting the expressions for de/dT, dh/dT, and e behind the wave 
into this expression, we obtain 

(3.7) 

Let us now consider the second condition. On the front of a diverging 
wave, .AE =~H. or E2 - H2 = E 1 - H1 = const. In our case 

= H0 - const x h/ fi, E = const x 
e/fi. 

E- H = 1/)0 ( ';-e- !lt0 Vr0 j rh -H0 = 1/)0 Vrof r (e +h) - Ho = const, 

so that e + h = const. Using (3.4) and (3.5), we find that in front of the wave 

e+h= 2 [ 1 - ~ (2n-1)!!(2n-3)!!]. 
f;:l 22n (n!j2 

(3.8) 

This series converges, so that the invariant e + h has a finite value on the wave front. 
Using the solution (3.6) for the region behind the front, as well as relation (3.7), we find that in that 

region 

e+h=-3a [1+ ~ (4n-i)!! ]· 
o f:!l 24nn! (n + 1)! 

(3.9) 
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Comparing (3.8) and (3.9) we obtain a0 in the form of the ratio of two series; numerical calculation gives 
a0 = 0.3536. It would seem that the accurate solution is 

a0 = -1/2 )12; .so that b0 = y2. 

Let us consider in more detail the divergence of e and h close to the reflected wave front. Introduc­
ing the new variables z = T - 1 and y = e/e' into Eq. (3.2) for e, we are led· to 

(1 - y') y-2 z (2 + z) + 2 (1 + z) I y- 314 = 0. 

When lz I « 1 and IY I « 1, this equation can be simplified, becoming dy/dz = 1 + y/z. We then have 

y = z (In z + const) = e I e' 

and finally 

(3.10) 

This equation describes the asymptotic behavior in the neighborhood of the diverging wave front on both 
its sides. 

Let us determine the coefficient of the logarithm in this expression. We shall choose A0 and At such 
that the difference between the exact expression <Bex as given by (3.6) and the asymptotic one ea as 
given by (3.10) vanish for T = 1. Let us write eex and ea in the form of power series in ( 1 + T): 

oo oo (1 n 

ee?1+ ]an(1+"t, ea=A0 +A1 ln2(1- 1 t")=A0 +Alln2-A1 ] ~~:), 
n=l n=l 

00 

eex-ea = 1- A0 - A1 ln2 + ~ (an+A 1 12nn)(1 + "( 
n=l 

The series in the last expression should converge when T = 1. From this it follows that 

lim (1 + ann2niA 1 ) = 0, 
n~oo 

since otherwise the series diverges as ~ 1/n. Therefore 

A ! . 2n 1. -'-(2_n_+'=-1'-)! --'! ('--2n_-___,.3-'-) !_! 1 
1 = - liT! nan= liT! 

n~ oo n~ co 22nn! (n -1)! rr 

(in order to calculate the limit, it is convenient to express the factorials by Stirling's formula). 
The coefficient of ln 11 - T I in the asymptotie expression for e behind the front is found in the same 

way, and is A2 = -a0 2.../2hr. With the exact equation a0 =- %.../2, we have A2 =At= 1/1r, which means 
that the coefficient of the logarithm in the asymptotic expressions for e on both sides of the wave front 
are the same. It is clear that the coefficient in the asymptotic expression for h differs from this only in 
its sign ( e + h is finite on the front). 

Using the same method to calculate A0 and the analogous quantity for h, we obtain asymptotic expres­
sions for e and h which are found to be of the same form on both sides of the waves, and are given by 

1 1 
e=!tlnll-"1+0.17, h=---;tlnl1-"l+ 1.10. 

Close to the cylindrical axis after focusing, 

e-?-li2Y2-r'J.= -(r/2ct)'1', h-?(21")'1'=Y2rlct. 

From this it is seen that the electric field close to the axis is 

E = - {)o Vro I r (r I 2ct)'1' = - {)0r~'r I (2ct)'1', 

so that E = 0 on the axis. The magnetic field is 

H = H 0 + gco )12rol ct, 

so that on the axis H - Ho decreases as C1f~ after focusing. 

(3.11) 

The fundamental quantitative results of the self-similar solution are shown in Fig. 3, which gives graphs 
of e ( T) and h ( T) calculated from the formulas for the exact solution. The same figure gives the asymp­
totic formulas describing e and h in the neighborhood of the reflected wave and the axis. 
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4. FURTHER REMARKS 

(a) Region of Applicability of the Self-Similar Solution 

As can be seen from the solution itself, it is applicable for waves of arbitrary amplitude, not only for 
strong waves as in gas dynamics. The solution gives an exact description of all the phenomena in a finite 
( r, t) region if, for instance, the surface of an ideal conductor surrounding a cylindrical cavity moves 
with r(t) corresponding to the solution obtained. If, however, this surface is suddenly caused to move 
and thereafter moves in an arbitrary way, the self-similar solution is not valid in the whole ( r, t) region, 
but describes only the behavior close to the axis at the moment of focusing. 

(b) Reflection of a Diverging Wave from a Conductor 

It is not difficult to see that the radius r ( t) of a cylinder within which the total flux <I> is conserved 
has, in the case of the self-similar solution and a compression wave, the form of the r ( t) curve shown 
in Fig. 2: in view of the unbounded values of H on the diverging wave, this curve should be tangent to the 
line r = ct, which means that the conducting surface should move away from the axis with the velocity of 
light c (behind the front the velocity decreases again). 

If before r = ct the conductor does not start moving sharply in the other direction, but moves as shown 
by the dotted line, then a wave of infinite amplitude will be reflected from it at point K. We have not con­
sidered the further behavior of such a wave as it converges, although it may be of interest. 

(c) Cylindrical Acoustical Wave 

Let us consider a weak converging cylindrical shock wave for which u « c, where c is the velocity 
of sound. The solution of this problem reduces to solving the wave equation for the pressure 

1 a2p 1 a ( ap) 
C2 fH2---, 7ir rat-- = o. 

This equation for p is exactly the same as (2.5) for H in the electromagnetic wave problem. Therefore 
their self-similar solutions are also identical, and on the wave front reflected from the axis the pressure 
is also infinite. Thus this qualitative property of cumulation is not peculiar to the electromagnetic nature 
of the waves, but is a property of converging cylindrical waves described by the wave equation. 

We note that for a spherical acoustical wave one may obtain a solution without the assumption that it is 
self-similar, and this makes it possible to verify the assertion that the self-similar solution describes the 
limiting form of the solution at the center close to the focus. A test shows that the self-similar solution 
for a sphere is indeed identical with the limiting form of the general solution, although in this case no 
singularities occur on the wave reflected from the center. (The amplitudes of the incident and reflected 
waves are equal, but opposite in sign; between the waves the pressure is maintained at every point.) 

In conclusion we thank V. P. Mordvinov, D. G. Lominadze, A. B. Govorkov, and A. A. Bunatian, with 
whom we have had extremely valuable discussions of the material contained in the present article. 

Translated by E. J. Saletan 
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