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Isotropic decay into two particles is treated in the laboratory reference system. It is shown 
that the distribution of the secondaries with respect to the quantity v defined by Eq. ( 42) 
has a number of simple properties ("symmetry properties") which are independent of the 
energy distribution of the primaries. Formulas are given which enable one, from the v-spec
trum of one of the secondaries, to determine the v-spectra of the other secondary and of the 
primary particle. Symmetry properties are also found for the spectra of the products of a 
cascade decay. Similar formulas for the energy spectra can be obtained by a simple compu
tation. When the angular distribution is taken into account, these formulas are approximately 
applicable to the high energy part of the spectrum. In addition to quantitative applications, it 
is pointed out that the relations derived here may be used for identification of the mass of the 
primaries and for establishing the isotropy or the cascade nature of the decay. 

IN the two-particle breakup of an elementary particle, the energy spectrum of the decay products is de
termined by the kinematic features of the decay and the energy spectrum of the primary. The simplicity 
of this relation results in a number of general properties of the spectra of secondary particles in the 
laboratory reference system. For decays into two photons, these properties were explained by Carlson 
et al} Subsequently, Sternheimer2 solved the problem of determining the high energy part of the spec
trum of the parimary particle (including its angular distribution) from the spectrum of its (arbitrary) 
decay products. In the present paper, after simplifying the computational procedure, we explain the in
ternal properties of the spectrum of the secondaries. We then solve the problem of finding the energy 
spectrum and the mass of the primary particle from the energy spectrum of the secondary particle, as 
well as the problem of finding the spectrum and mass of one of the secondaries from the spectrum of 
the other. 

1. PRIMARY FORMULA 

Suppose that in a certain volume there occurs the reaction A - a1 + a2 of decay of the particle A 
having mass M, momentum P and total energy E, into two particles characterized by m1, m2, p1, 

p2, e1, e2• We shall use an asterisk to denote these same quantities in the center of mass system. 
( c.m.s. ). Only the energy e1 of the particle a1 is recorded, without regard to its direction of motion. 
The following assumptions are made: the decay of A occurs isotropically; the energy distribution of A 
is given in the energy interval from Emin = M to Emax; all the particles a1 are recorded; the statis
tics are sufficiently good so that the shape of the energy distribution is precisely known. 

The distribution of A in energy and angle is given by N (E, ~)dE dcos~. We know that, for the case 
of a two-particle decay with isotropic distribution of the decay products in the c.m.s., the energy distri
bution of the secondaries for a fixed energy of the primary is equal to the constant ( M/2Pp* )de1, if e1 
satisfies the inequality e1 min ::s e1 ::s e1 max• and is equal to zero outside of the interval ( e1 min• e1 max>· 
The energy e1 reaches its largest (smallest) value when the particle a emerges forward (backward) 
relative to the motion of particle A. Lorentz transformations give 

Ee; =F Pp* 

M 

The number of particles with energy e1 in the interval of width de1, produced from particles A 
with energy in the interval dE and direction in d~, is 

335 

(1) 
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(M 1 2Pp') N (E, &) dE d cos & de1, 

while the number of particles at, formed from particles A with arbitrary {}, is 

(M 12Pp') N (E) dEdev 

where N(E) = J N(E, {})dcos ~ is the average of the energy spectrum of A over all directions. In ad
~ 

dition, the number density of particles at in the energy interval det, formed from the decay of parti
cles A of arbitrary energy, will be 

Emax 

nl (el) = ~ (M I 2Pp') N (E) dE, (2) 
Emin 

where Emin and Emax are the smallest and largest energies of particles A which produce particles 
with energy et. 

We proceed to simplify Eq. (2 ). To do this we shall characterize the motion of the particles by posi
tive quantities u or v according to the formulas 

E = M cosh u, e1,2 = m1,2 cosh V1,2· ( 3) 

It follows from { 1 ) that under Lorentz transformations the arguments for particles at which move for
ward (backward) are expressed simply as: 

Vrmax = v~ + u (forward), vl min = I v;- u I (backward). ( 4) 

Consequently, as u increases from 0 to oo, Vt max increases from vi to oo; Vt min decreases from 
vi to 0 in the interval where u increases from 0 to vi, and then increases from 0 to oo when u goes 
from vi to 00 • From ( 4) it follows that particles at with argument Vt :::: vi arise only from particles 
A with arguments in the interval (vt -vi, v1 +vi), while particles at with argment v1 :::5 vi come 
from particles A with arguments in the interval (vi - Vt, Vt +vi). Equation (2) can therefore be writ
ten as 

where 

. ,v,+v1 

n1 (v1) = k ~ N (u) du, . 
lv,-v1 1 

k = M I 2p', a n1 (v) = n1 (m1 cosh v), N (u) = N (M coshu) 

are the "densities" for the energy distributions of particles at and A converted to the arguments v 

( 5) 

and u. It should be remembered that to get, say, the number of particles with arguments between a and 
(3, n1 (v) must be weighted by the factor mt sinh v: 

8 

~ m1sinhvn1 (v) dv. 

" 

The transformations (3) are not applicable when the rest mass is zero. However, if we map the half
line et > 0 onto the line v t by means of 

(6) 

then the Lorentz transformations take the form v t max = u (forward), v t min = - u (backward ) , and the 
relation into which (2) goes for mt = 0, 

00 

nl (el) = ~ (M I 2Pp') N (E) dE 
Emin 

becomes 
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00 

ni (vi) = k ~ N (u) du. (7) 
I v, I 

Here we have 

ni (vi) ni (e: exp vl)· 

The simple form of ( 5 ), ( 7) makes them convenient for further calculations. 

2. RELATION TO THE MASS OF THE PRIMARY PARTICLE 

Let N(u) = 0 for u ~ U, where U ::=::vi. Then the upper limit in (5) is U. Since the integrand 
N (u) is non-negative, it follows from ( 5) that n1 (v1 ) is a monotonically decreasing function of the 
lower limit I v 1 - vi I. Its maximum value is attained for v 1 == vi, and n1 ( v 1 ) ::=:: n1 (vi ) for all vi .;, vi. 
Thus we find property A: the spectrum of the secondary particle, in the case where the arguments of 
particle A do not exceed U ::=:: vi (i.e., its energy is no greater than Eli)== Me! /mt), has a maximum 
(peak or plateau) at the point with abscissa v1 ==vi. The spectrum of gamma quanta shows a similar 
property at v1 == 0 for any energy range of the primary particles.* 

Since ni depends only on I vi -vi I, we have property B -the spectrum ni (v1 ) is symmetric 
around the point vi: 

v; = (v' + v'')/2, 

where v' and v" are the abscissas of points in the spectrum with equal ordinates. 
Similarly, the spectrum of gamma quanta has the property 

v' + v" = 0. 

(8) 

(8') 

Properties A and B enable us to determine the mass of one of the particles if we know the masses of 
the other two in the reaction, since vi is given in terms of the masses of the particles by 

The expression for M has the form 

For m1 == m2 == m, Eq. ( 10) reduces to 

M =2m cosh v;. 
The set ( 10) and ( 8) determine M either from the position of the peak or from the abscissas of the 
points on a horizontal line. Returning to the usual energy spectra gives 

or, for m1 == m2 == m: 

(9) 

( 10) 

( 11) 

( 10') 

< 11' > 
which reduces, for m == 0, to the formula M == 2 ( e;e; )1;2 derived in Ref. 1. From ( 8') or ( 10') we can 
also get the formula for the case of m 1 == 0, m2 .;, 0: 

( 12) 

Formulas (10), (10'), (11), and (11') are valid in the absence of primary particles with energies above 
Eli) =Me! /mi. Later we shall weaken these restrictions. Formula ( 12) is valid without any restric
tion of this sort. 

Property B might be called the logarithmic symmetry of the spectrum of secondary particles,4 since 
the argument is given in terms of the logarithm 

*We note that the condition u ==vi has a simple physical meaning: for values of u higher than vi, 
the secondary particle can only move forward in the laboratory system, i.e., there is a limiting angle of 
emergence. For u < vi there is no limiting angle. 
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Vt =In [(et + Pt) I m1] 

v1 = In ( e1 I e~) 

For non-relativistic energies, v1 coincides with the velocity of the particle. 
Property B can also be used to determine m2 when m1 and M are known: 

m2 = (M 2 + m~- 2Mm1 coshv~)'1•. 

3. DETERMINATION OF THE SP:~CTRUM OF THE PRIMARY PARTICLE 

We differentiate ( 5) with respect to v1 for Vt ~ vT: 

k-1n~ (v1) = N {v1 + v~)- N (vl- v~). 

To solve this difference equation for N, we set v1 - v! = u and give u successive values u + 2v!, 
u + 4vi, . . . Summing these equations givest 

v' 

N(u) = -k-1 ~ii~[u + (2v+ l)v~J. 
-o 

(13) 

( 13') 

(14) 

(15) 

The summation ends when n1• 0. Thus the number density of primary particles with argument u is 
proportional to the sum of the derivatives of the spectrum of secondaries at points with abscissas form
ing an arithmetical progression with difference 2vi and initial term u + vT. In the usual notation, ( 15) 
has the form 

N (E)=- (2p• I M) :~ (s)..P + PJ. E) ii~ (s1.E + PJ.P), ( 15') 
:~ 

where 

while vT is given by Eq. (9 ). 
The high energy part of the spectrum (where E: ""P) can be determined from the equation 

N(E)'"'"'- (2m1p• I M 2) E~exp(l..v;)'i\~ (E exp l.v;). 
A 

As an example, we consider the reaction 6°- 211". Here v~ = 1.18, so that 

Fi <E> =- o.829 {(0.5 P + o.415 E) n' (o.5E + o.4I5 P) + 4.84 (P +E) n' [4.84 <P + E)J + .. ·J, 
and for large E, 

(16) 

(17) 

.N <E>~- o.s29E ro.9I5 n' (o.9I5E) + 9.69 n' (9.69 E)+ •. . J. (18 > 

The last formula coincides with ( 42a) of Ref. 2, although it was derived under different assumptions. 
Later we shall explain the reason for this coincide,nce. 

For the case of m1 = 0, the formula for N wa;s derived in Ref. 1. In our notation it has the form 

N(u)=-k-1n~(u) (19) 

and is valid even for m2 f: 0. 

4. THE SPECTRUM OF TH1!: OTHER SECONDARY PARTICLE 

By substituting in the expression for the spectrum of a2 (m2 f: 0 ): 

. 
"•+"" I 

n2 (v2) = k ~ N (u) du 

lv,-v; I 

tThe prime denotes differentiation with respect to the argument. 
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the spectrum of A as obtained from ( 15) or ( 19 ), we can construct the spectrum of a2 from that of at: 

,n2 (v2) = ~ [ni ( I V2- v; I + l.v;)- n1 (v2 + v; + l.v;)l (m1, m2 =I= 0), (20) 
J. 

(21) 

(In all sums, X = 1, 3, 5, ... ) 
If m2 = 0, the spectrum of a2 is expressible in terms of the spectrum of at by means of (7) and ( 15 ): 

n2(v2) = ~nt( I v2 I +'-v'i) (m1 =f=O, m2 = 0). (22) 
J.. 

Reverting to the usual parameters, energy and momentum, we rewrite (20)- (22) as 

~ ~~ + + ~ + + 
n2 (e2) = LJ [ni (a~. e2- ~A P2)- n1 (aA e2 +~A P2)l 

A (20') 

n2 (e2) = ~ (nl (a):e2 + ~):p2)- til (4e2 + ~tp2)] 
A 

(23) 

n2 (e2) = nl [e;M (e2- P2) I m~]- nl [e;M (e2 + P2) I m~] (e2 < e;), 

~ (e2) = nl [e; (e2 + P2) I M]- n;_ [e;M (e2 + P2) I m~] (e2:? e;). 
( 21') 

. . 
~ ~ -Av • t.v • • 
n2 (e2) = ~ n1[(m1e 1 e2 I 2 e2)+(m1e 1e2 I 2 e2)l (e2 < e2), 

A 

ll2(e2) = ~nl((mllv; e2j2e;)+(m1e-J..v~e;12e2)J (e2:?e;). 

( 22') 

A 

We give some particular cases of these formulas. For the reaction s- - A0 + 11"-, eA 2:: 1.1192 Bev, 

nA (eA) = n" (0.17 eA + 0.11 PA)- n" (0.20 eA + 0.15 PA) + n" (0.81 eA + 0.80 PA)- n,. ( 1.05 eA + 1.04 PA) + ... 
For the reaction :E0 - A0 + y: 

nA (eA) = n.,. (0.065 (eA + PA))- ny (0.075 (eA + PA)) (eA:? 1.1126 Bev ), 

ny (ey) = nA (6.7 ey + 0.046 e:;1 ) + nA (5.8 ey + 0.053 e;1) +... (ey ~ 0.0773 Bev), 

ny (ey) = nA (7.7 ey + 0.040 e;1) + nA (8.9 ev + 0.035 e;1) + ... (ey:? 0.0773 Rev). 

5. INTERNAL PROPERTIES OF THE SPECTRA OF SECONDARY PARTICLES 

Equation ( 15) shows that the spectrum of A can be determined from that part of the spectrum of at 
for whic&''111J1 2:: vi. On the other hand, the spectrum of A determines the whole spectrum of at, includ
ing the region Vt ::5 vi. There must therefore be a relation between the regions Vt ::5 v* and v1 2:: v*.t 
In fact, substituting ( 15) in ( 5) and setting v1 ::5 vi, we get (property C): 

nt(v1 ) = ni(2 v;- v1) -ni(2 v; + v1) + ni(4 v;- v1)- ni(4 vi+ v1} +... (24) 

In Sec. 2 we presented a niethod for determining vi and indicated the limiting energy up to which this 
procedure was applicable. Formula (24) enables us, at least in principle, to reduce and finally to elim
inate this restriction on the energy of the primary particle. 

tM. I. Podgoretskii called my attention to this point. 
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The arguments of the successive terms on the right side of ( 24) vary respectively within the inter
vals (vi, 2vi), (2v'i, 3vi), etc. If U :s v'i, then v1max :s 2vi, and all terms in (24) except the first 
vanish, so that we are left with the equation 

n1 (v1) = n1 (2 v;- vi) (25) 

which is a statement of property B (cf. above). Next, let vi :s U < 2vi. Then v1 max= U +vi< 3vi, 
and we must take two terms on the right of ( 24). However, for sufficiently large v 1 the second term is 
identically zero. This begins when the inequality 2vi +v1 ~ U +vi is satisfied, so that v1 ~ U -vi, 

prop-
erty 

c- -B~ ---c 
n,rv,; 

and the argument of the first term on the right is 3vi - U. We fi
nally get the following result: if vi :s U < 2vi, then (25) is valid in 
the neighborhood of vi, in the interval (U -vi, 3vi- U ); outside of 
this interval, in the neighborhood of 0 and 2vi, i.e., in the intervals 
(0, U -vi), (3vi - U, U +vi), we have the equation 

(26) 

Having found three points v', v", v'" such that ( 26 ) is satisfied 
[i.e., n1 (v') =n1 (v") -n1 (v'~~')] and for which 2v'=v"' -v", we de-

Jv," vt termine vi= (v' + v" )/2 (property C; see Fig. 1 ). 
FIG. 1 Similarly, we can show that if 2vi :s U < 3vi, then in the neigh-

borhoods of 0 and 2vi, in the intervals (0, 3v!- U ), (U - v!, 
5vi'- U), Eq. (26) is satisfied, while outside, in the neighborhood of vi and 3vi, i.e., in the intervals 
(3vi - U, U -vi), ( 5vi - U, U +vi), the condition is 

(27) 

etc. 
Thus, from U ,..., 0 up to ui2) = 2vi' there is a portion of the spectrum where property B manifests 

itself, while from u(t) = v! up to uf3\ = 3v! there is a part of the spectrum showing property C', etc. 
The limitation on the energy of the primary particle which was given in Sec. 1 is thus removed. 

Limiting Energies of Primary Particle 
(Bev) 

Reaction I Spec- j 
trum 

£(3) £(1) I 

7t---+(L+v IL 0.146 0.16 0.19 
8°---+ 27t 7t 0.85 2.5 7.7 

Ao---+p+7t- p 1.115 1.13 1.16 
Ao---+p+7t- 7t 1.33 2.1 3.6 
"L+---+p + "'o 7t 1.97 5.3 16 

S----+A0 + 1t- 7t 1.88 4.0 9,6 
'LO---+Ao+y y = - -

In the table, we give the limiting values of the energy, 
E(11, E/2\, E(3\ corresponding to ul1), ul2\, um for sev
eral decay reactions. For light secondaries (m1 « M) 
these limits are exceedingly high and go far out in the 
relativistic region. 

The spectrum of a1 has an integral property (P!.2£= 
erty_.Q_). Integrating (24) between the limits v1 = 0 and 
v1 := v!, and making a change of variables of the form 
2vv! ± v1 = t in each of the integrals, we get . . . 

~71 zv1 av1 

1~ n1 (v1) dv1 - ~ n1 (v1) dv1 + ~ n1 (v1) dv1 - ••• = 0, (28) 
0 v~ zv; 

i.e., if we break up the spectrum of the secondary particle into pieces of length vi (where the last piece 
may have a shorter length), then the sum of the areas of the even-numbered pieces is equal to the sum 
of the areas of the odd-numbered pieces. By finding a length v, such that property D is satisfied, we 
determine vi = v and M to an accuracy exceeding that attainable by using properties A to C. 

Formula ( 28 ) can also be expressed in the usual notation as 

+ 
e,(av;) 

\ - ] n, (et) d = 0 
~ • • • Pt el ' (29) 

e,(2v;) 

where e1 (x) = m1 coshx. 
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6. THE SPECTRUM OF THE PRODUCTS OF A CASCADE DECAY 

341 

Let us consider the case where one of the products of a decay A - a1 + a2 in turn decays into two 
particles, a1 - a 1 + a 2• Examples of this are the cascades 

;s- ~7t- + Ao__,.7t- + ('r,- + p) or -+ 7t- + (7to + n), so (l:O)-+ AD+ 7to-+ AD+ 2 I• },o__,. n + 7to-+ n + 2 I· 

In the last three cascades, for low energies, the two decay processes occur practically at one point. The 
spectrum of a1 has axial symmetry, so that the spectrum of a 1 should have some additional symmetry. 
In order to reveal this additional property of the energy spectrum of the products of a cascade decay, let 
us assign to the particle a 1 the argument w with the characteristic value w*, and assume first that 
the mass of a 1 is not equal to zero. The distribution of a 1 with respect to the argument w will be 

v(w) = (30) 

where 

k2 = m1 I 2 mrx, sinh w•, k1 = M I 2 p". 

Let us assume that vi < w*. This condition is satisfied for all the cascade processes cited above. 
Also, let us first assume that w 2:: w* +vi. Then the absolute value signs in (30) can be dropped. Dif
ferentiating ( 30) twice, we get: 

(k2k1f 1 v" (w) = N (w + w· + v~)- N (w + w"- v~)- N (w- w· + v~) + N (w- w·- v~). 

The procedure for solving this difference equation is a repetition of the computations we did earlier, and 
leads to 

m' n' 

N (u) = (k1k2f 1 ~ ~ v" (u + knw• + lmv~), kn = 2nH- 1, lm = 2m+1 - 1; m, n = 0, 1,2,... (31) 
m~o n~o 

Now that we have determined the spectrum of A from the piece w 2:: w* + v! of the spectrum of a 1 by 
using (31 ), we can relate other portions of the spectrum of a 1 to this one. Setting knw* + lmv't =A. and 
and substituting ( 31) into ( 30 ), we get: . 

w+w• v,+vl 

v (w) = ~ ~ dv1 ~ "~" (u + /,) du. (32) 
v lw-w*l Jv,-v~J 

First let w* ~ w ~ w* + v'f. Then the computations give 

v (w) = ~ [2 v (J,) + v (w + w· +Vi+ A)- v (w-w· + v~ + ),) - v (w + w" -· v~ + ),) - 1 (- w + w· + v~ + ),)]. (33) 
A 

Next, in the interval w* - v'f ~ w ~ w* Eq. ( 33) is again satisfied. Finally, for w ~ w* - vi, 

v (w) = ~v[(w +w· +Vi+ A) -v(w- v· + v~ + l) -v(-w + w· + v~ +A)+ v(-w -w· + v~ + ),)]. 
A 

The complexity of the formulas is an obstacle to a demonstration of the symmetry of the spectrum. How
ever, if the spectrum of A cuts off at U ~ vi, and as a consequence of this the spectrum of a 1 is cut 
off at U + w* + v'f ~ w* + 2v!, then in (31) all that remains of the sum is the first term vq(u + w* + v'f), 
while in (33) we are left with v (w) = 2v(w* +vi) - v(-w + 2w* + 2vi), which can be written in the form 

[v(w) + v(2w· + 2v~ -w)] 12 = v(w• + v;) (34) 

which shows that the pieces of the spectrum in the intervals (w*, w* + vi) and (w* + v!, w* + 2v'f) are 
transformed into one another under inversion in the point (w* + v'f, v(w* + v'f)) (see Fig. 2 ). If in addi
tion 2v! ~ w*, then v1 max < w*, and the spectrum of a 1 should also possess axial symmetry with re
spect to the line w = w*. (The image is shown as a dotted curve in Fig. 2.) As we extend the range of 
the arguments, the connection between the parts of the spectrum becomes complicated. 
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We must also consider the case where the mass of O!t is equal to zero. Considerations entirely anal
ogous to those used above give 

from which we get the following connection between the parts of the spectrum: for - vi :::: w :::: vi, 

v (w) = [2 v (v~)- v (- w + 2 v~)- v (w + 2 vi)] + [2 v (3 v~)- v (- w + 4 v~)- v (w + 4 v~)] + ... ; ( 35) 

for w :::: -vi: 

v(w) = v(-w). 

If, as was assumed above, the spectrum of A ends at U :::: vi, then (35) reduces to 

v (w) = 2 v (v;)- v (2 v;- w), (36) 

i.e., the point (vi, v(vi)) is a center of symmetry for the portions of the spectrum in the intervals 
(0, vi), (vi, 2vi). It is easy to see that the point (-vi, v( -vi)) also has this property (see Fig. 3 ). 

ii(Uij 

-Zv," -v," 0 v,• 

FIG. 2 FIG. 3 

If the maximum value U satis
fies the condition vi :::: U :::: 2v!, 
the central symmetry disap
pears and ( 36 ) becomes more 
complicated: 

v (w) = 2 v (v;)- v (2 v;- w) 

-v(2 v~ +w). 

The properties we have found 
may make it possible to distinguish 
the cascade decay A - at + a2 

- ( O!t + a 2 ) + a2 from the three-particle decay A - O!t + a 2 + a2• We may expect that in the latter the 
spectrum of O!t will not posses symmetry because of the anisotropy of the decay. From the location of 
the center of symmetry of the spectrum we can also estimate the mass of the primary particle. 

Now let us consider the reaction 7T- + p- ~0 + K0 - (A0 + 'Y) + K0• The directions of ~0 and K0 will 
not be distributed isotropically in the c.m.s. so that we should not expect any symmetry in the spectra of 
~0 and K0• However, the decay ~0 - A0 + 'Y can occur isotropically, so that the spectra of A0 and 'Y 
have the usual symmetry properties A to D of one -stage decay processes. The detection of such prop
erties in the spectra of A0 and 'Y may serve as an indication of the cascade character of. the process. 
In addition, if the spectrum of A0 is symmetric, we cannot admit any production of A0 via the process 
1T- + p- A0 + K0, which is anisotropic. Obviously, similar considerations can be applied to other reac
tions in which particles are created and which culminate in the decay of one of the produced particles. 

7. EXTENSION OF VALIDITY OF FORMULAS 

Throughout all of the preceding, the angular distributions of the secondary particles was not taken 
into account. It is possible to simplify Sternheimer's derivation2 of the formulas relating the angular 
and energy spectra of the high energy primary and secondary particles. This will enable us to extend 
some of the results obtained above to the case where the secondary particle is observed in a definite 
direction. 

Suppose that the particles at all appear at the same point. Also let us assume that a definite direc
tion of motion -~t' is selected, and that we record the energies of particles at moving in this direction. 
We take this direction as the polar axis. We shall assume that the distribution is uniform in azimuth. 
The probability for particle at to have a direction in d-~t' is 
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Therefore the total number of particles moving in the direction ,'}' = 0 will be 

dcos.&'~ ~N(E,.&)dEdcos.& 2 ~. -d-,---~-':~-,&:-
E3 

343 

If we require that cos,'}' and e1 lie in the intervals ( 1, 1 + d cos,'}') and ( e 1, e 1 + de 1 ), then we must 
either treat E as a function of e1 and ,'} or ,'} as a function of e1 and E. The first assumption was 
made in Ref. 2. The number density of particles then takes the form 

~ ~- dE (e1 , .&) M de1 (.&) 
n1 (ei>O) = N[E(e1,.&),.&] d -2 P. -d o.dcos.&, . e1 p cos " 

3 

which necessitates further messy calculations. But on the second assumption, ,'} = .'}(E, e1 ), we imme
diately get 

Emax 

nder 0) = (M I 2 p*) ~ N [E, .& (E, er)l p-1 dE. 
Emin 

This formula is essentially the same as ( 34) of Ref. 2, but is exact. Transforming to arguments u, v 1 

in place of E, e1, we can express the distribution with respect to u and v1 as 

where 

. 
v,+v 

1 

n1 (v1 , 0) = k ~ N (u, & (u, v1)) du, . 
lv,-v I 

1 

.& (u, V1) = arc cos [( coshu cosh v1 - cosh v~) J sinhusinh v1); 

(37) 

For high energies (large values of u and v1 ), the angle of emergence ,'} is close to zero, and (37) can 
be replaced by the approximate equation . 

v,+v1 

n1 (vi, 0) = k ~ N (u, 0) du. . 
1v,-v11 

(38) 

This equation is identical with ( 5 ). Therefore all the consequences of formula ( 5) which are not depend
ent on the condition that the energy be low are also valid for ( 38). So formulas ( 15 ), ( 17 ), ( 20)- ( 22 ), 
(20')- (22') are also valid for the case where the secondary particles are observed at a definite angle . 

. Now they give the spectra of A or a1 in the direction of observation, and not their spectra averaged 
over all angles. This explains why Eq. ( 18) of this paper coincides with ( 42a) of Ref. 2. 

We present formulas, valid for high energies, which give the spectrum of one of the secondaries in 
terms of the spectrum of the other: 

n2 (e2) = ~ [nr (e2e -v;-J.v~)- flr (e2ev;+Av~ )] (ml> m2 =I= 0); 
A 

(39) 

These formulas are applicable when the limiting angles of emergence of both secondary particles are 
small. 

8. CONCLUDING REMARKS 

(40) 

(41) 

Thus, in a two-particle decay, to make clear the connection between the energy spectrum of the decay 
products and the energy spectrum of the primary component (averaged over all angles), it is conveni-
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ent* to introduce the parameter 

G. I. KOPYLOV 

v = cosh..11 =cosh·'(e / m) =In e + P • 
m 

{ 42) 

The distribution of the decay products with respect to this parameter {the "v-spectrum") has simple 
properties which are independent of the energy distribution of the primary particles: {A) In a certain 
range of energies of the primary particles, the distribution of the secondaries has a maximum at a point 
v* which is determined by the masses of the particles. {B) In this same energy range, the distribution 
of secondary particles is symmetric with respect to the vertical line through the point of the maximum. 
{C) When the energy range is extended, we retain the simple relation {24) between the points of the 
spectrum in even {2vv*, 2vv* + v*) and odd {2vv* + v*, 2vv* + 2v*) intervals of the v-spectrum. {D) 
The total area under the v-spectrum in the even sections is equal to the total area of the odd sections. 

In principle, the use of properties A to D enables us to identify the mass of the primary particles. 
These properties of v-spectra occur under the following assumptions: presence of only two decay prod
ucts; isotropy of the decay in the center of mass system; absence of competing decay processes; limita
tion of the range of energies of the primary particles; absence of systematic errors in counting of sec
ondary particles; absence of any preferred direction of observation; good statistics. We shall assume 
that those assumptions are fulfilled which depend on the arrangement of the experiment, and limit our
selves to the first two assumptions. Nothing in thils paper shows that these are necessary conditions for 
the symmetry of the v-spectra. However, from physical considerations, it does follow with a definite 
probability. We can assign this same degree of reliability when {subject to the fulfillment of the other 
conditions) we apply the symmetry criteria to prove the isotropy or cascade character of a decay {as 
was recommended in Sec. 6 ). 

The formulas for determining the energy spectra of the particles are suitable for use in experiments 
in emulsions or chambers where it is possible to avoid selection of a definite direction of observation. 
However, the existence3 - 5 for certai~ angular distributions of "isotropic" directions, along which the 
flux of particles is the same as for an isotropic distribution, enables us to use these formulas in counter 
experiments also. 

I express my gratitude to M. I. Podgoretskii for his interest in the work. 
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