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A strong electromagnetic field of frequency w and amplitude F induces radiation of lower 
frequency n0 [Eq. (12)] in a molecular gas. The intensity of this radiation is computed. 
Quantum-electrodynamical considerations are presented which corroborate the applica
bility of the correspondence principle in the investigation of this phenomenon. 

1. INTRODUCTION 

THE phenomenon of radiation by molecules in the presence of a strong high-frequency field has been 
examined by the author .1 In the present paper we develop a more detailed analysis of this phenomenon. 

Let E1 and E2 be two non-degenerate energy levels of a molecule, f.ttt and J.t22 the dipole moments 
(electric or magnetic) of the molecule in the states with energies E1 and E2, and J.t 12 the dipole moment 
of the transition 1-2. Thus E1 and E2 can be components of the Stark splitting of the levels, whence 
f.ttt and J.t22 are electric dipole moments. Furthermore, let a strong electromagnetic field act at a fre
quency w, close to the resonant frequency of the molecule w12 = ( E1 - E2 ) /li = w0• As is known, such a 
field excites transitions between the states 1 and 2 of the molecule. As a result of such transitions a 
change of the dipole moment of a molecule takes place from f.ttt to J.t 22 and conversely. This change 
takes place with the frequency of transitions between the states 1 and 2. The number of such transitions 
per unit time has the order of magnitude 

(1) 

where F is the amplitude of the field of frequency w. Every change of dipole moment, however, must 
give rise to emission of energy. It is evident that such emission must have the frequency !Jo. The ex
perimental determination of this frequency permits very accurate evaluation of the product of the dipole 
moment of the transition J.t 12 by the amplitude of the high-frequency field. 

By such a method, in principle, with a known dipole moment, a precise measurement of high-frequency 
fields is possible. On the other hand, if the intensity of the high-frequency field is known, there is the 
possibility of direct determination of the dipole moment J.t 12 . 

We note that the effect described here is to a certain extent analogous to the Stark and Zeeman ef
fects. In fact, the Stark effect gives the possibility of observing radiation of a frequency proportional to 
the product of the intensity of the constant electric field by the electric dipole moment in a given energy 
state (in our case f.ttt or J.t22); the Zeeman effect gives the possibility of observing a frequency proportion
al to the product of the intensity of the constant magnetic field by the magnetic dipole moment (diagonal 
element of the magnetic dipole-moment operator). In the presence of a strong high-frequency field, how
ever, there appears a radiation of frequency !Jo, proportional to the product of the amplitude of this field 
by the magnitude of the dipole moment J.t 12 of the transition. 

We shall first calculate the effect described here with the aid of the correspondence principle and 
then indicate quantum-electrodynamic considerations that confirm the existence of this effect. 

2. ANALYSIS BASED ON THE CORRESPONDENCE PRINCIPLE 

Based on the correspondence principle, we shall describe a molecule by means of quantum mechanics 
and the radiation by means of classical electrodynamics. 

We shall assume that the following conditions are fulfilled:2- 4 

323 



324 V. M. FAIN 

(a) To« 1/w « 7', where To is the duration of a molecular collision and 7' is the mean time between 
collisions; 

(b) 
where m, n f. 1, 2; 

(c) A molecular collision returns a molecule to the state with energy E 1 or E2; 

(d) w0 » n0 • 

Let an isolated molecule have levels Ei which are characterized by the eigenfunctions ~i exp (iEit/li ). 
Then 

(2) 

where H0 is the Hamiltonian of a free molecule. In the presence of interaction with an electromagnetic 
field of frequency w, the Hamiltonian of a molecule in an external field will have the form 

H = H 0 - p.F (t) = H 0 + V sinwt, 
(3) 

where F (t) = F sin wt and I' is the dipole moment operator. 
The wave function of a molecule in an external field satisfies the Schrodinger equation 

i1tiJ'Yjat = (H 0 + V sinwt) o/. 
(4) 

We shall seek the solution of this equation satisfying the conditions (a) through (d) by a method given in 
the book by Landau and Lifshitz.5 

In the presence of interaction, we seek a solution of Eq. (4) in the form 

Here we have used condition {b). At the instant of collision, t = t 0, according to condition {c), let* 

Using conditions {b) and (d), we obtain upon transformation the following equations for a1 and a2: 

... ~Cit_ -- vl2 i8t .. da. - 1 v -i8t tn- dt - 2i e a 2 , ttL-{[[- -21 21e a 1 , 

where 6 = w0.-w. We make the substitutions 

and obtain the equations 

b = - [V l2c2leiat + V 2lcl2e--iat]/1i, 

C12 = (VI2/21t)Dei31 , c.21 = (V2I}21i) De-i81 . 

Equations (9) can be solved exactly. Differentiation of Eq. (9a) and substitution in Eq. (9b) gives 

Again differentiating and using Eqs. (9a, b) we obtain 

The general integral of this equation is 

D =ex cos 0 0 (t- T) + ~, 
where 

(5) 

{6) 

(7) 

(8) 

(9a) 

(9b) 

(10) 

(11) 

(12) 

*One could choose the other possible initial condition a2 = 0, a 1 = 1. The final result, as is clear from 
physical considerations, does not depend on which of these conditions is assumed. 
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and a, {3 and T are real constants. The initial conditions [ Eq. (6)] can be rewritten in the new notation 
in the form 

c12 = c21 = 0, D = 1 f01 t = f 0 • (13) 

If the first two conditions are substituted in Eq. (9a) we obtain D = 0 when t = t 0; whence T = t0 in 
Eq. (11). Analogously we find the constants a and {3. As a result we obtain 

(14) 

Let us now determine the mean dipole moment of a molecule at an instant of time t. Using Eq. (5), we 
find 

(15) 

Using the corresponding principle as a basis, we can now find the emission and absorption of the mole
cule. The last two terms in Eq. (15) give the contribution to absorption of electromagnetic radiation of 
frequency w.2• 3 Therefore, we shall be interested in the first two terms in Eq. (15): 

<111> = l a1 :2 P.n + I a2 i2 !122 = 1/ d P.n + !122 + (!122 - P.n) no-2o2J + 1/2 (1ii1of2 (!122 - P.u) I v 12l2 cos no ( t - to). <16 > 

Here we have used Eq. (14) and the fact that la112 +I a212 = 1. The contribution to the emission is given by 
the variable part of the moment 

(17) 

where* 

(18) 

in the case of strict resonance 6 = 0 and 

(19) 

Taking into account that the times T between collisions are distributed according to the law 

w ('t) d-e= (IF) exp (- 't/~) d-r (20) 

(this occurs for a sufficiently rarefied gas), one can find that the spectral intensity of the emission of a 
molecule has the form 

(21) 

The total intensity of the emission is equal to 

(22) 

This emission is essentially a non-equilibrium process. It proceeds only under the influence of an ex
ternal driving field (in our case the strong field of frequency w). Therefore Kirchhoff's law does not ap
ply here and the absorption by a molecule of a field of frequency n 0 will not bear the resonance character 
of Eq. (21). 

In fact, in addition to the strong field of frequencyw, let a weak field of frequency n close to the fre
quency n0 act on a molecule. Then the Hamiltonian of a molecule in an external field can be written 

H = H0 + Vsinwt + Wsin.Qt. (23) 

In this case in place of Eqs. (9) we obtain 

*In Ref. 1 in the expression for IJ.o there is an additional factor D0 = pg2 - p ~ 1 or, in the notation of the 
present work, D0 =(I a212 -la112>t =to· This quantity, however, has a modulus of unity (see the preceeding 
footnote) and we therefore omit it here. 
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D._ 1 [V ist V -iBI] 2sin0.1 [W iw t W iw I]· -- t nC21e + 21c12e + - 1-.1- 21e "C12- C21 12e " , 

If we discard the non-resonance terms of these equations we obtain 

Jj = -} (V12C21eiBI + V21C12e-iBI]j'li; 

• (V /2 ) D iBt sin 0.1 (W W ) . - (V /21L)D -iBt sin 0.1 (W l\7 ) C12 = 12 t e + ----y:;;-- 11- 22 C12' c21 - 21 e - it 11- 22 c21. 

(24a) 

(24b) 

Examining, solely for simplicity, the case of strict resonance 6 = 0, differentiation of Eq. (24a) yields 

- 1 D + t-2 1 V 12 12 D = 7.! sin D.t (W 11 - W 22) [V 12C21- V 21cd. (25) 

In the absence of a field of frequency fl, the right side of Eq. (25) is zero. If absorption of the fre
quency fl exists, it is caused by the term on the right side of Eq. (25). It is easy to see, however, that in 
our approximation the right side is zero. As a matter of fact, one can substitute Eqs. (9b) for c12 and 
~1 in the right side. But from these equations we have (for 6 = 0): 

(d/dt) (Vl2c21- v21cl2] = 0. 

At the initial moment t = t 0; c12 = c21 = 0 and consequently for all time 

Thus a weak external field of frequency fl R~ flo does not change the character of the motion of a molecule 
and consequently, resonance absorption at the frequency flo does not exist. This also follows from the 
physical considerations presented above. 

Let us now examine the question of the coherence of the radiation from the individual molecules of a 
gas. Let for example, E 1 and E2 be components of the Stark splitting and J'u and p. 22 be effective di
pole moments in the states 1 and 2. (In this case it is necessary to assume that the effect of a constant 
electric field is taken into account in the Hamiltonian of the "free" molecule H0.) Then p.0 [see Eq. (18)] 
will have one and the same value for all molecules and consequently, the amplitudes of the radiation 
fields of all molecules will have one and the same value.* The phase of the radiation however, is random 
and depends on the time of the last collision for each molecule. The total field intensity of the radiation 
of all the molecules will be:8 

E = ~ Ai cos D. (t- tiO) =A L cos (D.t- <pi)= E0 cos (D.t + 'il), 
i i . 

(26) 

E~ = A2 [(~cos 'fiy +(~sin 'f1)1 
L L 

(27) 

tan<p =~sin<pi/~cos<pi. 
i i 

(28) 

Equation (27) can be rewritten in the form 

E~= A2 [n+2~cos(<pi-tpk)], 
i, k 

(29) 

where n is the number of molecules and the summation is carried out over the cosines of the n(n- 1)/2 
phase differences between the separate molecules. 

Let us estimate the possible values of the phase differences Eik = C',Oi - c;ok. For all E ik « 1, E~ R~ n2 A2 

and the radiation is coherent; for Eik• which take all possible values from 0 to 21T and higher, the sum in 
Eq. (29) is equal to zero and the radiation is incoherent. In our case 

For an estimate one can assume that t10 - tko varies from 0 to 'T -the mean time between collisions. But 

*In the example under discussion it is supposed that the molecules are separated by distances much 
smaller than the wavelength of the emitted radiation. 
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it is obvious that the condition n "'f > 211" is essential for the existence of the spectral line n0• Thus we 
can rewrite Eq. (26) in the form: 

E =A -vn- cos (Dt +'f), 

and the intensity of radiation of all the molecules is obtained as the product of the intensity of radiation 
of a single molecule [Eq. (22)] by the number of molecules n: 

J. = (DU 3c3) 1-'~n. (30) 

Reabsorption of radiation at the frequency n0 can be disregarded because there is no resonance ab
sorption at the frequency n0• We note that, in contrast to the intensity of spontaneous emission, which is 
proportional to the number of active molecules nact = n2 -n1 (see, e.g., Refs. 7- 9), where n1 and n2 
are the numbers of molecules in the upper and lower levels, it is the total number of molecules which en
ters in Eq. (30) . This is related to the circumstance that the intensity of radiation at the frequency n0 

does not depend on whether a molecule is found in the upper or lower level at the instant of collision. 
The effect described here of radiation in the presence of a strong high-frequency field occurs only in 

a case where the difference (~&22 -~& 11 ) is not zero. Generally speaking, a check of this condition is not 
necessary in each specific case. One can say at once, however, that the indicated difference does not 
vanish for the case where E1 - E2 = tiw0 depends on a constant electric (Stark effect) or magnetic (Zee
man effect) field. 

As a matter of fact in this case the energy of interaction with the constant field F c is included in the 
Hamiltonian of the "free" molecule 

(the steady field F c is directed along the z axis). Further, since 

(see, e.g., Ref. 5), we have 

Let us introduce the appropriate matrix elements for diatomic molecules and symmetric-top type mole
cules. 

We examine first the diatomic molecule. If the molecule consists of different atoms (or of different 
isotopes), it has a constant dipole moment j.tn, where n is a unit vector directed along the axis of the 
molecule. It will be necessary for us to determine the matrix elements ILz = j.Lnz. 

In Hund's case a (see Ref. 5) 

Here E is the energy level of a molecule in the presence of an electric field F c; n = A+!: is the pro
jection of the sum of the orbital and spin moments of a molecule on the axis of the molecule, J is the 
total moment of the number of motions of the molecule, and MJ is its projection on the z axis. If a 
high-frequency field F is directed along the z axis, the selection rules .:lJ = ±1; and .:lMJ = 0 apply. 

The difference of the energy levels is 

2M10. 
E (J + 1, M;, Q)- E (J, M;, D)= 2Be (J + 1)- FcP. J (J + 1) (J + 2) 

whence 

(P.zh2 - (P.z)u = 2p.M;DjJ (J + 1) (J + 2). 

We note that in the absence of an electric field there is degeneracy over the quantum numbers MJ 
which is completely removed by the linear Stark effect. Thus in our case the presence of an electric field 
is necessary since in the absence of the field the mean value of (IL z )22 - (IL z) 11 over all the degenerate 
sublevels of MJ is zero. 
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The matrix elements (JLzh2 in the present case have the form5 

( ) I+J..41I,o l;(J+ I)" M 2 1 ~/ (1+1)"-02 
fLz I, MI. Q = fL 1 " - I J + 1 V 4 (J + 1)2 -1 ' 

In an analogous way one can find matrix elements for Hund's case b. In this case the energy of the 
Stark splitting is 

J (J + 1)- S (S + 1) + K (K + 1) 
-Fe (fLz)nn = 11EMI =- F cfLMIA 2K (K + 1) J (J + 1) . 

Here A is the projection of the orbital moment of the electrons on the axis of the molecule, S is the total 
spin of all the electrons of the molecule, and K is the sum of the orbital moment of the electrons and of 
the rotational moment of the nuclei. 

For non-linear molecules of the symmetric-top type it is easy to find5 

( ) ) J I J 2)• I+l,MI,k v 2 2 j w/ (J+1)2-k2 
fLz 22- (fLz 11 = 2p.Mik/ (J + ) ( + ' (p.z)I, MI. h = fL (J +I) - MI J + 1 V 4 (J + 1)2 -1 ' 

where J is the moment of the top, MJ its projection on the z axis and k the projection on the moving 
axis connected to the molecule. One should note that the matrix element (JLz )t2 which determines the 
transition probability between the levels E 1 and E2, generally speaking is different from the matrix 
element (JL~h2 which corresponds to the transition between the levels E~ and E~, where the index 0 de
notes levels of the Hamiltonian H0 (without a constant field). In case, however, the energy of the Stark 
splitting is much less than the difference of the levels of the non-perturbed Hamiltonian (only under this 
condition are all the formulas written down here correct), the difference of these elements is rather 
small. 

With the aid of the formulas written down here for the matrix elements one can estimate the value of 
the intensity of the radiation Eq. (30). Let 6 = 0, then, according to Eq. (19) 

and for the symmetric-top we have* 

f2f1.• [(J + 1)2- M7 ]2[(J + 1)2- k2 ]2Mjk2 

Js = 3c3! 4 n J' (J + 1)" (J + 2)2 [4 (J + 1)2-lj' 

Let k = 1, MJ = 1 and J = 1, then 

Here JL is in Debye units and F is cgs units. If we take JL = 12 (for the Csi molecule, see Ref. 10), 
n = 1011 and F = 5 statvolts/cm = 1.5 kv/cm, then Js = 1.4 x 10-16 w. 

The intensity of radiation can be substantially raised by means of a molecular beam in which all of the 
molecules are in a single energy state. If a high-frequency field begins to act on a molecule in such a 
molecular beam, then in the first instant the system will radiate coherently with an intensity proportional 
to n2, the square of the number of molecules in the beam. The dipole moment of the entire system will 
be equal to :tlJ'o cos !"2 0 (t-t0 ). Newly arriving molecules, however, will decrease the dipole moment of 
the system since the sum of the dipole moments of these molecules is close to zero. 

Actually, let the field begin to act at the time t0• Then the dipole moment of the entire system at the 
time t is equal to 

n 2 (I) 

P = nt(t) P.o cos !J0 (t- f0) + ~ p.0 cos !J0 (t- t0 - Z; / v;), 
i=l 

where n2(t) is the number of molecules newly arrived in the time t -t0 [n2(t0 ) = 0] and n1 (t) is the 
number of molecules still remaining of those which in the initial moment filled the entire region in which 
the field was acting, [n1 = n- n2]; zi and vi are the coordinates and velocity of the i -th molecule. 

At the instant of time t 0 + T, where Tis the mean time of flight of a molecule through the condenser 
(in which the high-frequency field acts) n1 (to + T) = 0 and the dipole moment 

*The same is true for diatomic molecules in a state with spin equal to zero if one substitutes J, M J 
and k for K, MK and A. 
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n 

i=l 

The radiation becomes completely incoherent. If the field is now switched off, then after a time ~ T, i.e., 
at an instant of time to' ~ t 0 + 2T, all of the molecules in the condenser will be newly found in a single 
energy state. If at this moment the field is again switched on, radiation ....,n2 once more resumes which 
after a timeT completely goes over into non-coherent radiation ""n. 

Thus in order to attain coherent radiation of a frequency flo it is necessary to supply a high-frequency 
field in pulses of duration t 1 ::; T , where the time between pulses t2 must satisfy the condition ~ ~ T . 
Then in the time interval t 1 the radiation flo will be approximately proportional to n2 while in the inter
val ~ the intensity will be zero. Thus, for n = 1010 (this is a fully attainable number of molecules in a 
molecular beam; cf. Ref. 11) n2 = 1020 , this gives an intensity of radiation ....,103 larger than that calcu
lated earlier. 

3. QUANTUM-ELECTRODYNAMIC ANALYSIS 

The occurrence radiation at the frequency fl 0 [ Eq. (12)] can be explained on the basis of simple 
quantum-electrodynamic considerations. 

Actually a system which consists of a molecule and of an electromagnetic field of frequency w, is de
scribed by the Hamiltonian 

!7t = H 0 + H~ + V /2, 

where Ho is the Hamiltonian of the free field of frequency w and V /2 is the interaction energy [the 
coefficient% is needed to retain conformity with Eq. (30)]. We shall seek a solution of the equation 

in the form of a superposition of solutions of the equation 

Let us write 

where 

are wave functions which correspond to energy levels of the systAm molecule +field: 

rfJio) = £1 + N 01tw; r[J~o) = E2 + (No+ 1) 1tw, 

(31) 

(32) 

(33) 

Here Ef0> ~ t:~0J; if~~ and if~~ are wave functions of the free molecule, cl>No (N) and ci>No + 1 (N) are 
wave functions of the free field and N is the number of photons 

Substituting Eq. (33) in Eq. (32), multiplying first by if~O)* and then by -iJ!2( O) * and integrating, we ob
tain two equations 

The condition for the existence of a non-trivial solution to these equations gives 

p _ _!_(.£1'0) + p(o)) +_!_ v(p(O) _ p(Ol)2+'V f2 
(01.2- 2 (Dl (02 _ 2 (Dl (02 I 12 • 

Thus, transitions of the molecule +field system are possible with radiation of quanta of energy 

rfJ1- <Bz = Vt.2 (wo -w)2 +I V12i2 = 1ii1o. 

(34) 

(35) 

(36) 

This is the same expression for the frequency of the emission which we obtained earlier (see Eq. (12)]. 
On the basis of the correspondence principle we have found that the intensity of radiation is propor-
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tional to ll'u -1'22 12• A quantum electrodynamic examination must lead to the conclusion that the matrix 
elements of the operator of the energy of interaction with the electromagnetic field of frequency Uo which 
correspond to the transition Ct- e2, are proportional to IJ.&u-1'221· We shall demonstrate that this ac
tually occurs. 

The operator for the energy of interaction with the field of the emission can be written as 

W = W0 (q) ~, (an+ a;) = B~ ~~ (ak +a;); 
k k 

(37) 

Here W0 (q) depends only on the coordinates of the molecule, B is a constant and ak and a~ are 
operators of absorption and creation of photons of frequency U = ck. The prime on the summation sign 
denotes that terms with frequency close to w0 are dropped from the sum, these terms being taken into ac
count in Eq. (31) in the interaction energy V /2 with the external field of frequency w. The matrix ele
ments of the operator Eq. (37) have the form: 

Let further 

Then the matrix element which corresponds to the appearance of a photon of frequency U, is 

(d)l> 0 I W ldJ2, l1-) = c~c1 ((W0 q))11 + c;c; (W0 (q)b = B (c~c~ [Lu + c;c~ P.z2)· 

(38) 

(39) 

(40) 

Here we have taken into account the orthogonality of the functions <I>N and <I>N + 1• The probability of a 
transition with the emission of a photon with frequency U is proportignal to the0 square of the modulus of 
the matrix element Eq. (40, and is essentially different from zero under the condition that Ct = e2 + tm. 
This condition coincides with Eq. (36). 

It is still necessary for us to find the coefficient c1, c;, c2 and c2. From Eqs. (34) and (35) we find 

c1 I c2 = V 12 I !d)~o)- dJio) + V (d)io)- (/)~0)) 2 + I V 12 j2], c; I c; = - c~ I c~ or c~c~ = - c;c~. (41) 

Using Eqs. (40) and (41) we find 

(42) 

Here under l'u and 1'22 it is necessary to understand the projection of the vectors J.L 11 and J.L22 in the di
rection of polarization of the emitted quantum nU. 

Thus the quantum electrodynamic approach justifies the application of the correspondence principle in 
our case. 

In conclusion I should like to express deep thanks to Professor V. L. Ginzburg for his valuable advice 
and thorough discussion of the results of the work. 
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