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The magnetic susceptibility of semiconductors with impurity bands in strong magnetic fields 
is considered. It is established that for a given dispersion law the susceptibility has a term 
which oscillates with increasing field strength. Since these oscillations depend substantially 
on the properties of the model accepted for the semiconductor with an impurity band, their 
experimental observation can yield a partial confirmation of the correctness of the proposed 
model. 

1. INTRODUCTION 

CoNSIDERABLE attention has been devoted recently to experimental and theoretical investigation of the 
properties of semiconductors with impurity bands, especially semiconductors of theGe type.1- 3 

In spite of this, very little is known about the nature of the impurity band, the dispersion law, and the 
distribution of the impurity atoms in the host lattice. One way to investigate these questions is to invent 
a specific reasonable model for semiconductors of this type. One would then consider those parameters 
whose behavior depends fundamentally on the assumed model. By comparing theory with experiment, one 
can then determine whether the model is correct. 

The parameters to be considered, probably, can not be the electrical conductivity or the Hall coeffi
cient, whose qualitative behavior does not basically depend on the particular properties of models. It 
will be shown in the course of this paper, that a suitable property for investigation is the magnetic sus
ceptibility in strong magnetic fields H. 

For this purpose, we shall limit the discussion to the simplest kind of semiconductor, namely, one 
which has an energy spectrum that contains a conduction band and a fundamental impurity s-band (for a 
p-type semiconductor it would contain a valence band and an acceptor impurity band). The impurity to 
be considered will have only one valence and its concentration per cc will be denoted by n0• The for
bidden energy gap, ~E, between the bottom of the conduction band and "the top" of the impurity band will 
be considered positive. 

If the impurity band is narrow, i.e., its width is D ~kT, one must take into account how far the rela
tion between the energy of the electron, E (k ), departs from a quadratic dependence on the wave vector. 
We shall assume that E (k) is nearly periodic in the fundamental impurity s-band. That this assumption 
is valid will become clear as we progress. For simplicity, we shall assume that 

s (k) =- L1 [cos kxa +cos kya +cos kz a], 

i.e., it is as if the impurity atoms were distributed in a simple cubic lattice with a lattice constant, a, 
given by: a= n01/ 3 In Eq. (1) the following relations were used: 

and the zero-energy value was assigned to the center of the impurity band. 

(1) 

(2) 

It is in this model that we shall now consider the magnetic susceptibility in a strong magnetic field,· H. 

2. MAGNETIC SUSCEPTIBILITY OF ELECTRONS IN THE IMPURITY BAND 

Calculation of the magnetic susceptibility of electrons in the impurity band presupposes a solution of 
the corresponding statistical sum: 
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ZH = Sp exp (- :/cjkT), 

where to the particular degree of approximation used here4 

;Jt =-~[cos kxa +cos (kya + ~~ ax)+ coskza J + SflBH, 
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(3) 

(4) 

if the field, H, is applied along the Z-axis and the corresponding vector potential is chosen; s = ± 1; J.L B 
is the Bohr magnetron, and!:::.= !:::.(H). This yields a closed expression for ZH for any non-vanishing H 
and !:::./kT = b0• However, one must take it into account that impurity bands, generally speaking, are nar
row and their width D is less than or of the order of kT. Consequently, it is assumed that b0 < 1, and we 
proceed to calculate ZH under this assumption. 

To calculate ZH, it is expedient to transfer to the k-representation, i.e. to write x = i8/8kx· The 
value of ZH can be calculated to terms of the order of b3 inclusively and for any H (in the case of an 
impurity band); therefore, since the part of k, which depends on kz and on the spin of the electron, enters 
additively, one has the following expression for ZH 

ZH = 2~a3 ~ l,costdt (e~'-lW/hT + e-p.BH/hT) Sp exp[boCOS X+ bocos(Y +i~ a~)]. 
-1t 

from which 

(5) 

where 

A= b0 cosX, B= b0 cos (Y + i~a;ax), 
A 

and Io is Bessel's function of zero order with imaginary argument. Since in Eq. (5) the operators A and 
B do not commute, one can apply Feynman 's theorem5 to calculate Sp exp (A + B): 

Z~ = Spe~p (A+ B)= Sp exp A exp [~dsexp (-sA) Bexp (sA) J, 
from which 

exp (-sA) B exp sA= B + exp (-sA) [B, exp sA.]. 

Using this theorem again, 

Sp exp (A + B) = Sp eA.e'B exp ( ~ dse-sB (~ ds' e-s'A [B, es'A] ) r/8 } = Sp exp A exp B exp [ ~0 dsT (s) J , 
0 0 

since the index s' does not play a regulating role,5 so that 

T (s) = e-s'B-sA' [B, es A] es B. 

If T ( s ) is found to be small, then one can use for ZH the expression 

00 ~ 

z~ = Sp exp A exp B ~ w n. Wo = 1' w n = ~ dsl ... 
n=O o 

8 n-l 

~ dsnT (s1 ) ••• T (sn)· 
0 

(6) 

It should be noted, that as in the case which is under consideration, with bo < 1, T ( s) "' b~, the series 
in Eq. (6) converges sufficiently rapidly, because the principal term in Wn is proportional to b~n. 

To calculate the commutator in T l s ) we make use of the properties of the displacement operator 
exp (± iY 'F 0!8/8X). 
Then 

[B, exp sA] = b; {[esb, cos (X+~)- esb, cos X) e-iY+ao1oX + [esb, cos (X-~)- esb, cos X] eiY-ao/ oX}. 
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Since it is not possible to calculate ZH for all values of b0, we can make use of the fact, that in our case , 
it is possible to substitute b0 < 1 and to calculate the terms in ZH, by expanding in powers of b0, the 
quantities expsb0 cos X and expsb0 cos (Y+ ia8/8X), keeping in zH: only terms proportional to b~. 

In what follows in place of T ( s ) for simplicity we calculate the quantity 

T"fl (s) = exp 'IJSA exp sB (exp (- sB), AJ exp (-sA), (7) 

where T/ is a certain parameter. 
In order to obtain an expression for zil to an accuracy including terms of b~, it is necessary to 

calculate in Eq. (6) the quantities W1 and w2, since, as is evident from Eqs. (6) and (7), Wn,..., b~n: 

ZH = Sp {eb, cos Xeb, cos (Y + icx.ojoX) (I + W1 + W2)}. (8) 

Subsequent calculation of T (s) and TTl (s) is straightforward although very cumbersome. Therefore, 
we shall not go through the details, and will give instead the result of the calculation of zil. It is simple 
to prove that 

Sp eb, cos Xeb, cos (Y + icx.ojox) = I~ (b0) (9) 

for any H and b0, and it is independent of H; the dependence on H comes about because of the non-com
mutability of the operators A and B4 • To an accuracy of terms of the order of b~: 

1 

Sp eb, cos Xeb, cos (Y + icx.ojoX) W1 = ~ ds Sp eb, cos X· T"fj (s), (10) 

in which T/S = s- 1. Noting that 0 

Sp f (X) cos (Y + icx.ojoX) = Sp f (X) cos3 (Y + icx.ojoX) = ... = 0, 

" 

we obtain that 

1 I Sp f (X) cos2 (Y + iocojoX) = 2 ~ f (X) dX, 

(11) 

To this degree of accuracy, 

Speb,cosXeb,cos(Y + icx. 0~ )w2 = ~~ (sin2 ~ sin2cx. - sin6 .;- -- sin2 -J-cos4 i). (12) 

Substituting Eqs. (11) and (12) into Eq. (8) and zH: of Eq. (5), we obtain:* 

ZH= ~3 / 0 (b0)cosh fl.:: {l~(b0)+ :1 <D(cx.)}. <D(cx.)=sin2 ~ (2-3cos4 ;)+3sin2 ~ sin2 cx.- 3sin6 ~. (13) 

Using the methods of contour integrationz,G and the expression for ZH one can obtain an expression 
for the density of electrons T/ in the impurity band: 

- { 2 f sin [;~cos fL"sH~ [ 3 b•~• J} - -
n(or,H,T)=n0 1+1t)d~ sinh~ /0 (b~)+ 12 <D(cx.) , t.n=n(or.H,T)-n(or0 ,0,T) 

0 
(14) 

2 f [ /~ (b~) - - - b'~' sin [1:~ cos "fLsH~ J 
= -;; ~ d~ sinh~ (sin or~ cos orp,H~- sin 11-o~) +CD (ex.) 12 sinh~ , 

0 

where Ji = J.L/nkT, b = .6./lrkT, lio = 1i (H= 0). Here J.L is the chemical potential, 'i'B = J.L/nkT, and I0 is 
Bessel's Function of zero order with a real argument. 

Using ZH and the methods of contour integration, one can also obtain an expression for the magnetic 
susceptibility of the electrons in the impurity band:6 

( - )( -) -«ll' ( o:) 7tfl.; 7tfl.; no fl. B 7t fl.; 
X1 = Xo + Xsp+ Xosp• X0 =- 2s0 -"'- . .9 l -tanh 2 - 2- I- 2tanh 2 - 2 - , Xsp= -y- ~ tanh-2-; 

t-1,2 t-1,2 

*The expression for ZH (T) differs from the expression for ZH for H = 0 only by terms of the order 
of~« 1. 
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- ~ 7tfL; ( rr!J:;) ( h 7tfL; ) 
Xosf = 2s0rrp.sH 0 i~.:anhy 1 -tanh 2 - 2- 3- 4tan 2 2 , 

s0 = e2/lb 3aj768n2c2 , <D' (et:)-d<D(et:)/det:; fLL2 = p.slf ±fL, Ho- t,cjea2 ; 

{15) 

where the bar over 1-Lt 2 means division of that quantity by 1rkT. 
' 

3. MAGNETIC SUSCEPTIBILITY OF A SEMICONDUCTOR WITH AN IMPURITY BAND 

In what follows we shall not take into account the magnetism of atomic impurities. Let us assume that 
the complete magnetic susceptibility is approximately equal to the sum of the susceptibility of the im
purity band x1 and that of the electrons in the conductivity band x2• An expression for x2 can be found 
for any field, provided that the electron gas in the conductivity band of the semiconductor with an im
purity band is non-degenerate. 

Making use of the well-known expression for the statistical sum of electrons in a field H, we obtain 

eH 1i"'o coshrr[LsH ( - D, ) Z - 2 (2~ • kTJh2)'/• 
Wo = m'c ' N (H, T) = Zo 2kTsinh(1i<il0j2kT)exp \'l"CfL- kT ' 0 - .. m '• 

(16) 

where N ( H, T) is the equilibrium concentration of electrons in the conductivity band, IL is the chemical 
potential, D1 = 3~ + ~E, m* is the mean value of the effective mass of the electrons, and ~E is the 
energy gap between the conductivity band and the fundamental impurity band; it is assumed that for T ~ 
10° K, ~E > kT. For larger fields, H, i.e. for 11"1-LB H » 1, 

X2 = kTH-2 N (H, T){ 1 + "'~BH (I- m/m')}. 

It is easily shown, that, in the conductivity band, electron gas is non-degenerate as was assumed in de
riving the expression for x2. To prove this, we must calculate IL ('H, T ). To do this, let us make use of 
the electrical neutrality equation: 

{ 2 f sin [L~ cos !J:sHf:l [ 3 b•~• J} 
n0 1 +--;-J d~ sinhp J0 (b~)+-2 -<D(et:) +N(H, T)=n0 • 

0 

(17) 

To calculate Xt to an accuracy of bt, it is sufficient to solve for IL from Eq. (17), neglecting correc
tions of the order of b~. With reference to Xo + Xosp, further explanation is not required since xo + xosp 
"' bt. As regards x sp• this quantity will be of interest in what follows only when it is of the same order 
of magnitude as Xo + xosp. This occurs, for example, for sufficiently large values of a, since Xsp "' 1/a3 

and xo + xosp "' a. Such a situation occurs in a semiconductor with an impurity band if 7Jo "' 1015 - 1018 

so that a"' 10-5 -10-scm. 
In this case Eq. (17) becomes (for large H) 

n0 (tanh rrfz -tanh rrf') = N (H, T), 

or 

(18) 

In this equation we have taken into account the fact that j.L < 0, which follows from Eq. (17). Conse
quently j.L - D1 < 0 and therefore in the conductivity band there is no degeneracy. Because of this, one 
may use Eq. (16) for X2· 

It has been shown4 that the approximation (4) is satisfied in all cases for values of H, such that 1-LBH 
<~E. Since we are considering very low temperatures T ,$ 10° K, for which ~E > kT, and large values 
of H, for which ~E 11-LB > H, and tiw0/2 > kT (usually for a semiconductor of the Ge type m* < m, and 
tiw0/2 > j.LBH) therefore, we can put N/no « 1; n0 ~ 1015 -1016 • Smaller values of n0 in the presence of 
an impurity band are hardly worth considering. But then from Eq. (18) 

- - 1 { 'li"' - ( 1i"'o \ -r\ -D,/I<T 1 
exp "'fL = 1 -S cosh "'fLslf, S = no L.k;cosh "'VsH sinh L.kT ) ( e ~ , (19) 
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i.e., 

~=-(S/77)coshiT[LsH, If'· I <S; 1, N=n0S(1-Scoshrrp.sH). 

Consequently, for small values of b, p. is negative and has a small absolute value, which decreases 
with increasing H/T. As for the susceptibility x2, for large values of H, when N « n0 and consequently 
Eq. (19) holds, one finds 

X (H T) ~ N [ - - 'liwo h 'liwo ] flB 
2 ' ~ 1 + rru.8 H tanhrr[tsH- - cot 2kT - ' 

1tflBH ' 2 . H 

i.e., lx21 « noJ.L:s/H = Xsp• Thus, in deriving an expression for x2, one may neglect corrections to 'j:f of 
the order of b~. On the basis of what has been established thus far, taking into account the monotonic de
crease of I ji I with increasing H, one can readily determine the behavior of the magnitude of x in a 
changing field H. The magnetic susceptibility x1 , consists of three parts. The first term of Eq. (15) 
can be interpreted basically as the orbital susceptibility of the electrons in the impurity band, Xo· As is 
evident from Eq. (15), with increasing H, xo decreases in magnitude and oscillates like iJl (a )/a for a 
.<; 1, i.e., for H.<; H0• Incidentally, since n0 ....., 1015 -1018 and a....., 10- 5 -lo-s, it follows that H0 = 

tic/ea2 is not very large, i.e., Ho....., 103 -105• The second term in Eq. (15) which arises from the mag
netic susceptibility of the spin of the electrons in the impurity band, monotonically decreases with in
creasing H. The third term Xosp arises as a consequence of the coupling between the orbital and spin 
magnetism. For large H the separation of X into an orbital and spin susceptibility is ambiguous. This 
third term also oscillates with increasing H and its magnitude decreases, provided that H.<: H0• For 
sufficiently large H, but for D1 » J.LBH, x2 plays a smaller role than Xt . Since xo and Xsp are of the 
same order of magnitude, it can be shown, that the complete expression for x decreases and changes 
sign, i.e., it oscillates. 

Note that if the impurity has an average valence ~, such that 1::::; ~ ::::; 2 (for T = 0 in a narrow band 
~ take the place of n0), for calculating N (H, T) and x2 one ought to use the Fermi distribution function 
for the electrons in the conduction band. This is readily done, using the methods of contour integration.6 

However, by means of such calculations one can verify that the basic conclusion concerning the oscillatory 
behavior of x (H) is still valid. In fact, in case that 1::::; ~::::; 2 the magnitude of ii has an oscillatory de
pendence on H only in the approximation, in which x is proportional to b~ and lx21 « lx11, for suffi
ciently large D, large tiw0 and low temperatures.* 

Nbte also, that since H0 is not exceedingly large, then for sufficiently low T, it is also possible that 
H .<: H0, but kT » ll:BH and kT » tiw0• 

It should be emphasized that the principal result, i.e., the oscillation of ton and x (H) with increasing 
H, is obtained for H0 ~ H « H1 = toE/1-LH. This is the basic criterion which leads to the oscillation of X· 
Since toE and H0 can be practically independent of T, so also the oscillation of X• generally speaking, 
can be realized for J.LBH ~ kT as well as for J.LBH ~ kT, so long as Ho ~ H « H1 • 

For example, if J.LBHo < kT, it is possible to have J.LBH > kT, as well as J.LBHo :S J.LBH < kT, provided that, 
J.LBH 1 > kT. If on the other hand J.LBH0 > kT, then it must be also that J.LBH > kT: for such low temperatures 
usually J.i3H1 = toE > kT, where toE is the energy gap between the fundamental impurity band and the con
duction band5 (it is possible to convince oneself, that for normal conditions, in the presence of a funda
mental impurity band, rather than impurity levels, excitation of the impurity band does not play a very 
important role). 

It is equally possible for tiw0 > kT or tiw0 < kT, while still being consistent with the condition H0 ~ H 
« H1 • Note, however, that for elementary semiconductors like Ge m* < m and tiw0/2 > J.LBH. Since the 
change in the resistivity in a magnetic field, t.p = PH -Po is proportional to ton, and since ton for Ho ;s 
H « H1 oscillates with increasing H, one can expect that in this case top will also oscillate with increas
ing H (if H0 ~H « H1 ). Therefore, if J.LBH « kT, then 

*Note that for H « H0 and J.LBH « kT, xo = S0 ( 1 - tanh2 rrj:L/2 )( 1 - 2tanh2 rrj:L/2 ), the magnitude of xo 
can be8 positive for ji = 0 (i.e., an approximately half-filled band), and it can be negative for jL- ± oo (i.e., 
for an almost empty, or an almost filled band: n/n0 « 1 or n/no;:;::; 2 ). 
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Thus the oscillation of x with increasing H occurs only if H0 ~ H « H1, where H1 is a particular 
value of the magnetic field, whose value is limited by the requirement that it should satisfy the approxi
mation in Eq. (4), i.e., for H0 « H1 • 

The oscillations of x (H) are completely distinguishable from the de Haas-van Alphen oscillations for 
the following reasons: ( 1} they do not depend on the degree of degeneracy of the electron gas, (2} the 
period 2H0 of these oscillations does not depend on H or T and their amplitude decreases with increas
ing T, or, more exactly, with decreasing b0, and ( 3} from a calculation of the susceptibility for the 
special case ( 1} one can prove that the oscillations, by nature, occur as a consequence of the periodic de
pendence of E (k} and of the non-vanishing character of the commutator [A, B ]. The latter provides the 
basis of the assertion that in the case of narrow energy bands for any periodic dependence of E (k), the 
susceptibility x (H} will have an oscillatory part if H0 < H < H1 • In effect, for any periodic behavior of 
E (k ), the approximate Hamiltonian for H < H1 , can be written as 

it = ~ Ai cos ( kai + 2~c [H, r] ai) + sp.BH, 

' 
Here r = ivk (The summation occurs for the nearest neighbor approximation, for example, in the model 
of tightly bound electrons; it is sufficiently good for an investigation of narrow bands). 

It can be shown that 

[(kai), ([Hr] ai)l = 0; 

where it is understood, that 

[cos(kai + 2~c [Hr]ai ), cos(kai + 2~c [Hr]ai)]=FO 

for i -f j. But, in agreement with item ( 3} above, the oscillatory terms in x ( H} are obtained by an evalu
ation of such commutators. Therefore in the case of a narrow band, i.e., for I Ai /kT I< 1, consider the 
case in which ZH and x can be evaluated by expanding them in powers of I Ai /kT I, and their solution 
can be obtained using the method of Feynman.5 In this case, one can expect that ji depends on H, just as 
before [see Eqs. (17} and (19} J. and that the susceptibility X has an oscillatory part, so that these oscil
lations give rise to the characteristics referred to above [items (1} and (2} ]. To this same degree of pre
cision, Eq. (18) still determines "ji, even for the general case. 

It must be understood, that these assertions require a more detailed investigation. 
Let us return now to an examination of the oscillation of x (H) in a semiconductor with an impurity 

band. 
It follows from Refs. 9 and 10 that for moderate concentrations of impurities, n0, when it is still pos

sible to distinguish the impurity band from the conduction band, the random distribution of the impurities 
leads to a smearing of the edges of the impurity band. This leaves the level-distribution density g( E} in 
most of the band nearly equal to the level-distribution density for an ordered distribution of the impuri
ties. The impurities in semiconductors of the Ge-type are of the lattice-substitution type. Thus, while 
g ( E} has a substantial maximum near the middle of the impurity band, it becomes very small in the 
smeared edges. If kT is smaller than the width of the principal part of the smeared band, which forms 
the boundary of the impurity band, it is indeed dangerous to make use of the periodic approximation for 
E (k}. If, on the other hand, kT is greater than the width of the whole band, which is true for a narrow 
band, then the smearing of the band probably plays a small role, as a consequence of the small value of 
g ( E} in the smeared edges of the band. 

To calculate the summation of states for b0 « 1, it is therefore possibly advisable, to make use of the 
quantity g (E), calculated for a particular periodic function, E (k ), which approximates the dispersion law 
in the impurity band. It is here that it seems to make sense to use the periodicity of E (k} in the im
purity band. 

Conversely, if under suitable conditions (low T, H0 < H < H1 , large D and small m* ) the predicted 
oscillations of x (H) are observed experimentally in a semiconductor with an impurity band, this will 
probably allow one to conclude that E (k} is nearly periodic. It is possible that oscillations, like those 
described here, will also occur in other solids, whose energy spectrum contains narrow energy bands. 
For this to occur, it must also be assumed that the parameter similar to a should have a value, such that 
H0 « H1 • The effect will then occur if H0 < H < H1 • One can anticipate that for semiconductors with im
purity bands similar oscillations will also occur in some of the galvanomagnetic phenomena. 
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In conclusion, I wish to express my heartfelt thanks to Professor A. G. Samoilovich for his constant 
interest and valuable discussions. 
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