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MEASUREMENTS of the optical constants of metals, as has already been noted, 1 are extremely impor­
tant since these measurements, under certain conditions, afford the possibility of determining conduc­
tion -electron density.* 

In the low temperature region it is convenient to determine the optical constants by calorimetric 
methods because these methods are simple and because the small heat capacities of metals make it pos­
sible to achieve high sensitivity. The calorimetric method has already been used by a number of au­
thors;2•3 in these experiments, however, only the absorption was measured i.e., A= 1-r, where r is 
the reflection coefficient for normal incidence on the surface of the sample. 

Measurements of this kind cannot be used to calculate both optical constants of 
a metal. Two independent measurements are required. For this reason we have 
used an instrument with which both quantities can be measured. A schematic dia­
gram of the apparatus is shown in Fig. 1. 

A plane-polarized beam of infrared radiation is incident on the surface of the 
sample 1 at an angle cp close to the principle incident angle of incidence. The 
sample is located inside a vacuum calorimeter A on thin caprone rods 2. The 
calorimeter is suspended in a liquid-helium Dewar. The sample is cooled by heat 
exchange with helium with which the calorimeter is filled. During the measuremets 
the helium coolant is removed by the carbon pump B (Ref. 4) located in a separate 
chamber under the calorimeter and the sample is slowly heated by the absorbed 
radiation. 

The temperature of the sample is measured by the thermometer 3 of phosphor 
bronze which is in good thermal contact with the sample. A thin-walled copper 
coil, which acts as a black body, is soldered to one side of the- sample and is used 
to determine the intensity of the incident radiation. 

By carrying out measurements of simple heating in a given time for two orien­
tations of the polarized radiation (in the plane of incidence and perpendicular to 
the plane of incidence) it is possible fo find Apar = 1-rpar and Aperp = 1-rperp· 

FIG. 1• (A) vac- Then, the quantities 11 and K can be computed graphically using Eqs. (5) and (1) of 
Ref. 1. 
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This method was used to determine the optical constants of bismuth for wave­
lengths from 1 to 71J. at an angle of incidence cp = 70°. In this case, at 71J. the 
values of 11 and K were found to be respectively 2 and 2.5, whence I e: I = 2.2. An 
estimate based on the assumption that in this region I e: I ,..., 1/ w2 gives for bismuth 
N ::::: 3 x 1020 . This assumption can be verified at longer wavelengths; however, 

because of the low intensity it is extremely difficult to make the measurements. 
The intensity of the radiation incident on the sample can be increased by using a 
wider beam and by introducing the radiation into the calorimeter through an 
optical window in the side wall of the Dewar. It is convenient to use a metal Dewar 
with one side window for this purpose and to place the samples in the general vac-

*As has been pointed out by Ginzburg and Motulevich, if the dielectric constant of a metal e: = 11 2 

- K 2 ,..., 1/ w2, then 

where N is the number of conduction electrons per unit volume, n is the index of the refraction, K is 
the absorption index, m is the mass of the free electron, e is the charge of the electron, and w is the 
frequency of the incident radiation. 
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uum space of the Dewar on a fixed heat conductor. A detailed report on work being carried out will be 
published in the near future. 
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IN the quantum theory of interacting fields the perturbation-theory series is an asymptotic series.1 On 
the other hand, the problem of a non-relativistic nucleon interacting with a neutral scalar-meson field 
(n.s. theory) has an exact solution.2 In this case the exact Green's function of the nucleon is an analytic 
function of the coupling constant with an infinite radius of convergence (in the coordinate representation; 
in the momentum representation the radius of convergence is finite3). 

The problem of a non-relativistic nucleon which interacts with a symmetric pseudoscalar meson field 
(s.p.s. theory) does not as yet have an exact analytical solution. In spite of this fact an analysis of the 
convergence of the perturbation-theory series can be carried out. 

For the interaction 

( 1) 

there is a definite rule for writing the Feynman diagrams. The rule can be completely stated if we write 
only one matrix element, corresponding to the self-energy diagram in the first approximation 

( 2) 

where E is the nucleon energy (we neglect the kinetic energy of the nucleon), and the integration ex­
tends to some upper limit. We go around the poles in the complex plane K4 by infinitesimal increments 
E > 0 and 11 > 0, The symbol 11 corresponds to the appropriate Green's function in the non-relativistic 
case.4 In the upper half plane of k4 there is only one pole k4 =- v' k2 + JJ-2-. Closing the integration path 
in the k4 plane in an upward direction, it is easy to calculate the integral over k4 in (2). Mter integrat­
ing over the angles we have 

11. 

M(E)=! (t:YC!(CJC!;'tj\ k4dkj(E+Vk2-f-[L2) Vk2-t-[L2, (3) 
0 

where A is the cut-off momentum. In what follows we neglect the meson mass; going over to dimension­
less variables of integration we have 

( 4) 

(z = E/A). The rules for forming more complicated diagrams can be obtained easily by generalizing this 
example. 

Similarly, in n.s. theory with the interaction g1l/Jcpl/J, we obtain in place of (4) 


