
156 G. A. MILEKHIN and I. L. ROZENTAL' 

from the comparison of the experimental and theoretical curves: 
1. The one-dimensional theory describes satisfactorily the character of the distribution of transverse 

momentum components.* 
2. Best agreement of both distributions is obtained t for T = J.l1rc2 /k. The values T = J.l1rc2 /2k and T = 

= 3 J.l1rc2 /2k are already difficult to reconcile with experimental data, although the scarcity of the latter does 
not permit to rule these values out. The value T = J.l1rc2/k is in agreement with previous indications, based 
on the analysis of other experimental results (for composition of showers see Refs. 6 and 7 and for energy 
spectrum see Ref. 3). 

3. Since the value of temperature is connected with the value of the interaction cross-section of secon­
dary particles6 (evidently 1r-mesons) we can conclude that in the order of magnitude the latter equals the 
geometrical cross-section of the nucleon (li/J.t7rc)2• 

1 I. L. Rozental' and D. S. Chernavskii, Usp. Fiz. Nauk 52, 185 (1954). 
2 L. D. Landau, Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953). 
3 I. L. Rozental', J .. Exptl. Theoret. Phys. (U.S.S.R.) 31, 278 (1956); Soviet Phys. JETP 4, 217 (1957). 
4Debenedetti, Garelli, Talone and Vigone, Nuovo cimento 4, 1142 (1956). 
5Gramenitskii, Zhdanov, Zamchalova and Shcherbakova, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 936 (1957); 

Soviet Phys. JETP 5, 763 (1957). 
6 s. Z. Belen'kii, Dokl. Akad. Nauk SSSR 99, 523 (1954). 
1 z. Koba, Progr. Theor. Phys. 15,461 (1956). 
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An example is discussed which confirms the connection between "accidental" degeneracy and 
"hidden" symmetry of a system. The symmetry of a two-dimensional oscillator is studied, and 
the relation is found between the quantization of the oscillator and that of a certain operator 
of the type of an angular momentum. 

SuPPOSE the operator H is invariant with respect to some group G of transformations. Then the appli­
cation of these transformations results in the expression of the eigenfunctions of the operator H belonging 
to an eigenvalue En in terms of each other, and thus gives a certain representation Dn of the group G.1 As 

*The cited calculations have shown that the introduction of the conical stage2 of hydrodynamical motion 
predicts that the mean value of p _._is ~Me (where M is the nucleonic mass), contradicting the histogram 
shown in the figure. It :is possible that the conical stage of burst is necessary for the description of particle 
interaction at considerably higher energies than the energy of the shower of Ref. 4 (~5 x 1012 - 1013 ev). 

tIt should be noted that since we neglected the possible influence of the hydrodynamical transverse 
components the given values of T are, strictly speaking, the upper limits of the values. 
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a rule this transformation is irreducible. In the opposite case ( Dn reducible) one speaks of an "acciden­
tal" degeneracy. The study of several systems with "accidental" degeneracy, as carried out by Fock2 

(hydrogen atom), Demkov3 (three-dimensional oscillator), and Baker4 (n-dimensional oscillator), has 
shown that these systems possess in addition to the obvious symmetry group G also a higher "hidden" 
symmetry group G*. On the application of the transformations of the group G* the eigenfunctions be­
longing to the eigenvalue En give an irreducible representation DJ!l of the group G*. 

In the present paper we consider a further example confirming the connection between "accidental" 
degeneracy and "hidden" symmetry of a system. In addition, the symmetry group of the two-dimensional 
oscillator is studied and a relation is found between the quantization of the two-dimensional oscillator and 
the quantization of a certain operator of the type of an angular momentum. 

1. Let us consider a system with its Hamiltonian of the form 

H=-1'1-2jr, ( 1) 

where 

f 2 2 ( f 2)'12 
1'1 =~a I axi, r = \~Xi • 

i=l i=l 
(2) 

The obvious symmetry group of the operator ( 1) is the group df of orthogonal transformations of the £­
dimensional space. Separating variables in hyperspherical coordinates, one can readily verify that the 
eigenfunctions and eigenvalues of the operator ( 1) are given by 

k (f) I ( r -1)2 I ( , -1) <\ln,h= Ar exp(-por)F(-n+k, 2k+f-1, p0r/2)Yk, En=-1 n+-2-, Po= 1 n+-2-, 

k = 0, 1, 2, ... n; n = 0, 1, 2, .•. , 
(3) 

where F is the confluent hypergeometric function and Yr) denotes the set of £-dimensional hyper­
spherical functions belonging to the characteristic value -k( k + f - 2) of the angular part of the La­
placian operator. 

Noting that the functions y~) for fixed k give an irreducible representation D~f) of the group df 
and that En does not depend on k, one easily sees that the representation Dn corresponding to En is 
reducible and decomposes into a sum of irreducible representations: 

Thus we have to do with an "accidental" degeneracy. 
To find the "hidden" symmetry group of our system, following Fock2 we write the equation for the 

eigenvalues of the operator ( 1) in the p representation: 

(p2 + P2) <D (P) ___ <1+1>12r (f- 1) 1 <D (P'l (dp') P2 = _ E 
0 - •• 2 .) J p- p' 1/-1 , 0 • 

(4) 

(5) 

Regarding the components of the vector p/p0 as the stereographic projection of a point of an ( f + 1) -
dimensional unit hypersphere, and introducing the new function 

(6) 

we get the equation 
rt- 1) 

r \-2- 1 Y (M') dO.' 

y (M) = 21tUH>I2p0 j {2(1- cos y)}U-1>12 ' (7) 

where dQ' is the surface element of the ( f + 1 )-dimensional unit hypersphere andy 
tween the points M and M' of the hypersphere. 

is the "angle" be-

The invariance of Eq. ( 7) with respect to the group of orthogonal transformations d(f + l) of the 
(f + I)-dimensional space is obvious. Thus the "hidden" symmetry group of the operator ( 1) is the 
group d(f + 1). 

The solutions of Eq. ( 7) are the ( f + 1 )-dimensional hyperspherical functions y(f + 1) and the eigen­
values are as given in Eq. ( 3 ): 

( f- 1) Po = 1/ n + - 2 - · (8) 

For given n the functions Y~ + l) give the irreducible representation D ~f + l) of the group df + 1 . 
Since the system in question is the £-dimensional analogue of the hydrogen atom, our results are 
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the same as those of Fock2 for f = 3. 
2. In Ref. 4 it is shown that the symmetry group of an n-dimensional oscillator is the group of n­

dimensional unitary transformations. There is a well known connection between two-dimensional unitary 
transformations and the three-dimensional rotatio,n group, 1 so that it seems not without interest to exam­
ine the symmetry of the two-dimensional oscillator, the more so because there turns up by the way a con­
nection between the quantization of the oscillator and that of a certain operator of the type of an angular 
momentum. 

According to Ref. 4, the Hamiltonian of the two-dimensional oscillator, written in the form 

where 

a • a a • a 
a! = X + iJX, a! =X- (h , a2 = y + ay , a2 = y- ay• 

is invariant with respect to transformations of the form 

where Uk£ is a unitary matrix. 

2 

a~= ]Uk1a1, k = 1,2, 
1-1 

We note that under rotations Q( a) in the x, y plane and under Fourier transformation <I> of the 
function cp ( x, y) with respect to the coordinate x, 

00 

<Dcp(x, y) = (2~r)-' 1 • ~ e-tx~'f(;,y)d~, 
-co 

the operators ak are transformed according to Eq. ( 11) with the matrices 

n (ot) = ( c?s a sin a\ <D =c (-i 0) 
-sm a cos a)• 0 1 ' 

(9) 

(10) 

(11) 

(12) 

(13) 

Let us confine ourselves to transformations ( 11) that are close to the identity and have determinant unity. 
They can be written in the form 

3 

U = E + ~- ~ ot 1cr l' 
1-1 

(14) 

where E is the unit matrix and al. are the Pauli matrices. 
The group of transformations ( 14) is isomorphic to the three-dimensional rotation group, 1 and the 

corresponding infinitesimal operators are 

h=.iJh.= +crh., k = 1, 2, 3. (15) 

Using the following relations (valid for small a k): 

and also using the definitions of the operators Q and <I> (Eq. 12), we can express the operators Jk of 
Eq. ( 15) in terms of x and y ( cf. Ref. 3 ): 

(17) 

The operators ( 17) commute with the Hamiltonian ( 9) and satisfy the commutation relations of the angular 
momentum operators. 

The eigenfunctions of the Hamiltonian ( 9) belonging to the eigenvalue En = n + 1 are given by 

<!I ( ) - (~2n,-t-n, I 1)-'/, (- x2 + y 2
) H ( ) H ( ) - - 0 1 ') - 0 1 2 ( ,n,n, X, Y - " lll.ll2. exp - 2- n, X n, Y, /l2- n- Ill> ll1- , , ~, ... , ll, ll- , , , ... , 18) 

where the Hn are Hermite polynomials. Introducing the notations 

j = (n1 + n2)/2 = nj2, m = (n1- n2)j2, m =- j, -j + 1, ... j; j = 0, 1/ 2 , 1, a;2 , ••• , (19) 
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and using the properties of Hermite polynomials, one can easily verify that the functions 

Y jm (x, y) = 'fn,n, (x, y) = {,;22 j (j + m)! (j- m)!} -'J, exp (- x• -t y") Hj+m (x) Hi-m (y) 

satisfy the relations 
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(20) 

J2Yjm--(J~+J~+J;)Yjm=j(j+I)Yim• J3Yim=mYim• (J 1 +iJ~)Yjm=VU+m)(j+m+I)Yim:.e~> (21) 

which establishes the connection between the quantizations of the operators ( 9) and ( 17). 
It must be pointed out that the definition of an "angular momentum" operator by Eq. ( 17) combines the 

integral and half-integral values of the quantum number j . We also note the appearance in this case of 
an operator K : 

( 22) 

analogous to the Dirac operator 5 

K =(La+ I)~· (23) 

It follows from Eq. ( 21) 1 that under the transformations ( 14) the eigenfunctions ( 20) of the two­
dimensional oscillator that belong to the eigenvalue En = n + 1 = 2j + 1 transform according to the ir­
reducible representation Dj of the three-dimensional rotation group. Thus the group of transformations 
( 14 ), isomorphic to the three-dimensional rotation group, suffices to explain the degeneracy of the eigen­
values of the operator ( 9) and can be regarded as the symmetry group of the two-dimensional oscillator. 

In the n-dimensional case one can also restrict the discussion to the unitary transformations that 
are close to the identity and have determinant unity, but this does not lead to any interesting consequences. 

1B. L. Vander Waerden, Die Gruppentheoretische Methode in der Quantenmechanik, 1938. 
2v. Fock, Z. Physik. 98, 145 ( 1935 ). 
3 Iu. N. Demkov, (J. Leningrad State Univ.) 11, 127 ( 1953). 
4G. A. Baker, Jr., Phys. Rev. 103, 1119 ( 1956). 
5 P. A.M. Dirac, The Principles of Quantum Mechanics, 1947. 
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