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of the order of 103 - 104 vI em). In the vicinity of the critical point the scattering should be strongly de
pendent on the pressure. 
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The Bogoliubov equations for the "partial distribution functions" are used to compute the effec
tive field acting on charged particles in a plasma. It is shown that the effective field differs 
from the mean field by a small quantity of the order 1/N where N is the number of particles 
within a sphere whose radius is equal to the Debye radius. This result also holds in the pres
ence of a magnetic field. 

As is well known, the electric field acting on an individual particle of a medium is not equal to the aver
age field in the medium. For example, in a gas of free dipoles the effective field Eeff is given by the 
Lorentz formula Eeff = E + 47rP /3 where E is the average field and P is the polarization of the me
dium. This formula is obtained on the assumption that the molecular dipoles are mutually impenetrable 
so that each dipole behaves as if it were placed inside a cavity in a polarized medium. 

In the case of ionized plasma there is, of course, no basis for such an assumption. However, the effec
tive field in a plasma should also, generally speaking, differ from the average field because there exists 
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a certain correlation between the motions of individual particles. The question of the relation between 
Eeff and E in a plasma has been repeatedly discussed by different authors (see Ginzburg1 and the liter
ature cited there), and it has been shown that the effective field and the average field are the same. The 
most detailed proof of this assertion has been given by Ginzburg.1 However, he used a method which did 
not allow him to obtain explicit expressions for the effective fields. As a result of this, in particular, 
there has remained the unsolved problem as to whether the effective and the mean fields remain the same 
in the presence of an external magnetic field. 

In this paper Bogoliubov' s method2 is used to compute the effective field in a plasma. In the course of 
this computation the triple function is expressed approximately in terms of binary ones which corresponds 
to making an expansion with respect to the small parameter 1/nD3 where n is the density of particles 
and D is the Debye radius. By this method an analogous expansion is introduced in establishing the con
nection between the effective and the average fields and we restrict ourselves to the calculation of only the 
first order correctiojn. 

For the sake of simplicity we assume that the plasma in addition to electrons also contains only singly 
ionized ions of a single kind. We introduce the "microscopic density" of particles in phase space 

Fe= ~o(r-rk{t))o(v-v11 {t)) 
k 

for the electrons and 

F; = ~o(r-rk{t))0(v-vk{t)) 
h 

for the ions, where the summation is taken over all the electrons and ions respectively. It can be easily 
shown that in the absence of a magnetic field these functions satisfy the equations 

aFe e iJFe 
at+ (v\7) Fe- lrl Em av = 0, ( 1) 

aFi e iJFe at+ (v\7) Fi + M Em av = 0, ( 2) 

which correspond to the system of Newton's equations of motion for all the electrons and ions. In (1) and 
(2) m is the mass of the electron, M the mass of the ion, and Em the microscopic field, which can be 
obtained from the equation 

( 3) 

but in doing so one must omit in ( 1) and ( 2) the self-field of the electron or of the ion which is situated at 
the particular point in space. 

Equations ( 1) and ( 2) can also be written 

aFe e aFe e2 a ~ r-r' - + (v\7) Fe--- E 0 -a ------- Fe (r, v, t) {F; (r', v', t)- Fe (r 1
, V 1

, t)} dr'dv 1 = 0, at m v m av I r- r' I 3 

aF i e E aF i e2 a r r - r' F ( ) {F ( ' ' t) F ( ' I t)} d 'd I 0 Tt+(vv)F;+M o av +xrav) lr-r'l" ; r,v,t ; r,v, - e r,v, r v =, 

(4) 

(5) 

where in accordance with the stipulation made above the point r' = r must be excluded in carrying out the 
integration over r'. In Eqs. ( 4) and ( 5) Eo represents the external field; it satisfies the equation 
divE0 = 0, 

We shall go over from the exact microscopic equations ( 1) - ( 5) to a statistical treatment, and in order 
to do this we shall average all the quantities over a certain set of initial particle distributions. This means 
that we regard the exact densities Fe and Fi as random quantities. We shall denote the average values 
of Fe and Fi by fe and fi. The averaging of Eq. (3) yields 

clivE= 4,.-;e~ {f;- fe} dv, ( 6) 

where E denotes the average, i.e., the macroscopic field. On averaging ( 4) we obtain an equation which 
contains the binary distribution function: 

a f e e a f e e2 a ~ r - r' - I I. • I '. ' I -- +(vV')fe---Eo-a- ----a·- -1 --,1-a {fedr,v,r,v,t)-fee(r,v,r,v,t)}drdv = 0. at m v m v r- r 
(7) 
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Here 

fe; (r, v; r', v'; t) =(Fe (r, v, t) F; (r', v', 1)), 

(the brackets denote averaging) is the binary distribution function for electrons and ions. With respect to 
the average value of F eF ~ we can see that, strictly speaking, it is equal to 

(Fe (r, v, t) Fe (r', v', t)) = ( ~ o (r- ri) r~ (v- vi) o (r'- ri) 0 (v'- vi)) 

+ ( ~ o (r- ri) o (v- vi) 0 (r'- rh) o (v'- V~:) = o (r- r') ~ (v- v') fe (r, v, t) +fee (r, v; r', v'; t), 
j '.'- h 

where the binary function fee is the "non-singular" part of the average value of F eF~. However, since 
in the integration over r' we have excluded the point r' = r the term with the &-functions turns out to be 
unimportant in the present case. 

We assume that the electrostatic interaction energy of the particles is much smaller than their kinetic 
energy, i.e., e2n1/3 « kT, which is equivalent to the condition nD3 » 1. This condition is almost always 
fulfilled. It is evident that under this condition the correlation between the particles is very small, so that 
we may write f (r, v; r', v', t) = f (r, v, t) f (r', v', t) + cp (r, v; r', v', t) where cp is a small quantity. 
In accordance with this, Eq. ( 7) and the analogous equation for fi can be brought into the form 

ate e ate e2 a r r -- r' 
Tt + (vV') fe-m-E av- m av j I r' _ r' I" {'fei (r, v; r', v'; t)- 'fee (r, v; r', v'; t)} dr'dv' = 0, ( 8) 

(9) 

Our problem consists of finding the functions cp a{3· In order to do this we shall set up equations for the 
binary distribution functions. We shall here discuss in detail only the equation for fei -the discussion of 
the other equations can be carried out in a completely analogous fashion. 

We multiply Eq. ( 4) by Fi (r', v', t ), replace in ( 5) r, v by r', v' and after multiplying it by 
Fe (r, v, t) we then add the results and take the average. Taking into account the fact that 

(Fe (r, v, t) Fe (r', v', t) F; (r", v", t)) = f eei (r, v; r', v'; r", v"; t) + 0 (r- r') o (v- v') f ei (r, v; r", v"; t) 

etc., we obtain 

ate; (r, v; r' v'; I) 

at 
vV' . v'V'' . _ c _ E ate; _e _ E' ate; _ c" (r- r') ate; e2 (r- r'l_ ilfe; + ( ) fe, + ( ) fn m 0 av + M 0 av' ml r- r' I" av + M I r- r'l" ilv' 

e2 a ~ f - f 11 
· f f f1 11 1 I 11 !! If If ----a I "I" {fe;;(r,v;r ,v ;r ,v ;t)-feie(r,v;r ,v ;r ,v ;l)}dr dv m v r- r 

e2 a r f' -f" . I I, II ff, • 1 f. 11 fl. f1 11 + M (JV' j I r' _ r" I" {feu (r, v, r , V , r , V , t)- feie (r, V, r, v , r , v , t)} dr , dv = 0. ( 10) 

In accordance with the assumption made earlier concerning the smallness of the correlation, we write 

f (r, v; r', v'; r ", v";t) = f (r, v, t) f (r', v', t) f (r", v", t) + f (r, v, t) cp (r', v'; r", v"; t) 

+ f (r', v', t) ·y (r, v; r", v"; t)+ f (r", v", t) 9 (r, v; r', v'; t) -t- '~ (r, v; r', v'; r", v"; t) 

and neglect the last term on the right hand side. Then on taking ( 8) and ( 9) into account we obtain from 
( 10) 

a?ei (r, v; r', v'; I) J_ (vV') . + (v'V'') . _ e2 (r- r') !!_e__ f: _ e2 (r'- r) f ~ _ _"_ E ~ + _ _"__ E, a·~ei 
at I 'fe, 'Pet 11! I r- r'j 3 av ' M I r'- r 13 e av· 11! av M av· 

e2 (f- f 1 ) acpei e2 (f'- f) a(J(ei e2 iJfe ( f- f" f I II ff 1 1 11 ff 11 11 

M I r- r'j" (fV + M I r'- r I" dV' + m Tv j I r- r" I" {'fii (r, v ; r 'v ; t)- 'fie (r 'v; r , v ; t)} dr dv 

e2 at; \ r'- r" " " . . " "· " " + M w.) I r' _ r" I" {'fee (r, v; r , v ; t)- 'fei (r, V, r , v , t)} dr dv . (11) 

The quantities appearing on the right hand side of this equation are small, but they cannot be simply 
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neglected since they turn out to be essential for large and for small values of I r - r' !. In contrast to 
the method adopted by Bogoliubov2 of expanding in terms of a small parameter, we shall solve ( 11) in the 
following way. First we solve the stationary equation. We set 

( m \'f, ( mv2 
) ( M )'" ( Mv2 

) E = O, fe = n 2rrkTe) exp - 2kTe ' [i = n 2rrkT; exp - 2kT; ' 

etc., where n is the density of electrons (and ions), Te the electron temperature, and Ti the ion tem
perature. We substitute this into ( 11) and in accordance with the assumption that Te "1- Ti we neglect the 
velocity of the ions in comparison with the velocity of the electrons. Since v is arbitrary we obtain 

e2r e2r ne• \ r - r' 
Y'Xei (r) + kTer3 = - kTer3 Xei (r)- kT, ~ I r- r' J3 {Xii (r')- Xei (r')} dr'. ( 12) 

For r > e2/kt we may neglect the first term on the right hand side and from this, taking it into account 
that x _,.. 0 as r _... oo, we obtain: 

Xei (r)- ;~: ~ I r ~ r' I {Xu (r')- Xei (r')} dr' = rk~e • 

In a similar fashion we can obtain equations for Xee and Xii 

ne2 \' 1 e• 
Xee (r)- kTe ~ I r _ r' I {Xei (r')- Xee (r')} dr' =- rkT, , 

Xu (r)- ~~i ~ 1 r ~ r' I {Xei (r')- Xu (r')} dr' =- ~ k~; • 

The solution of the system of equations ( 13) - ( 15) is 

Xei (r) =- Xee (r) = (e2jkT,) e-rfDjr, Xil =- (e2jkT;) e-rfDjr, 

where D is the Debye radius: 

D = {kT.T;j4"e2n (Te + T;)}'l•. 

( 13) 

(14) 

(15) 

( 16) 

At distances smaller than e2 /kT Eq. ( 12) does not have a sensible solution. This is explained by the 
fact that the coincidence of particles of opposite sign, i.e., the formation of bound states, turns out to be 
statistically more favorable. Therefore, strictly speaking, a quantum mechanical treatment is required 
for the investigation of this region. However, one can make classical mechanics serve the purpose if one 
entirely excludes all elliptic orbits whose formation is not very probable as it requires triple collisions. 
In doing this it would be necessary to solve Eq. ( 11) without assuming a Maxwellian velocity distribution. 
Such a solution presents no difficulties but requires awkward calculations. Since the region of small 
(r - r') occupies a small portion of the correlation region and makes only a small contribution to the 
final result, we shall not undertake this task. We shall simply neglect the first two terms in the right hand 
side of Eq. ( 11 ), which is equivalent to neglecting the bending of the particle trajectory as a result of col
lisions. In accordance with this we shall in future exclude collisions with impact parameters smaller than 
Po= e2/kT. 

We shall assume that the functions fe and fi do not differ appreciably from the Maxwellian ones. 
Then one can substitute the solutions (/Ja(3 = faf'(3Xa(3 (I r - r' I) found above into the right hand side of Eq. 

( 11 ), which is small in terms of 1/nD3• By limiting ourselves to the linear approximation for the field 
we substitute the stationary solution also into the last two terms in the left hand side of Eq. ( 11 ). From 
this, after setting for eonvenience (/Jry(3 = q1~(3 + q1~(3, we obtain: 

a , :t +(vV)cp:;+(v'V')cp:;=- k~I~ E(r,t)ze;(lr-r'l)fe(r,v,t)f;(r',v',t) 
e 

+ ~;'. E (r', t) Xei (i r-r'l) fe(r, v, t) f; (r', v', t); 
L 

(17) 

a'P;; " ' ' " { 1 ate(r,v,t) ' I 1 8f;(r',v',t)} 'I 
3/ +(vV)cpe;+(vv)'fe;= m- av [;(r,v,t)-Mfe(r,v,t) av' vU(Ir-r ), (18) 

where U ( r) = - e 2e -r /D /r. Analogous equations may also be obtained for (/Jee and (/Jii. 
II 

If one substitutes the solutions of these equations into ( 8 ), ( 9) then terms of the form (/Ja(3 will give 
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rise to the collision term (see Appendix), while CfJ~{3 will give the correction to the average field. We 
e i 

define the effective fields Eeff for the electrons and Eeff for the ions by means of the relation: 

E~t = E + [f" (r, v, t)l-1 ~ I ~r--=-r~,l~ {cp~;(r, v; r', v'; t) - 'fae (r, v; r', v'; t)} dr' dv'. 

Then the kinetic equations can be written in the following form: 

a;: + (vV) f,- -~- :v E~rf,= St(fe), at i . e a i f at+ (vV) f; + -xrav Eer ;= St (f;), 

where St denotes the collision term. 
In order to find explicit expressions for the effective fields one must solve Eq. ( 17) and the analogous 

equations for cp~e and <Pii· In Eq. ( 17) we may neglect terms proportional to the ion velocity, and its 
solution is then given in the form: 

t 

'P~i (r, v; r', v'; t) =- fe(v) f; (v') ~ :; E (r- v (t- t'), t') Xei (1 r -v (t- t')- r' I) dt', (19) 
-co el 

where we have taken the functions fe, fi outside the integral having assumed that they do not change over 
a distance ""D and during a time ""1/w0 where w0 = -J 47re2n/m is the plasma oscillation frequencyo 

Substituting ( 19) and the similar solutions for CfJ~e and <Pii into ( 8) and ( 9) we can easily obtain ex
pressions for the effective fields. Since they depend on the velocity of the particle in a fairly complicated 
manner we shall average over this velocity. The terms with cp~e and <Pii evidently drop out as a result. 
We set E "" eiwt and we neglect in ( 19) the dependence of E on r by assuming that the wavelength A. 
» Do Then up to terms in 1/nD3 we obtain 

, ; . {E [I- TIJI2r:nD 3 (T; + T,)2] for (i) <:: w0 , 

<Eeff >v = <Eeff )v = E [I -(Ulo/iUl) V2. r'; i/ 12-.:' 'nD 3(T ;+ Te)2]=E for Ul :?_xuo. (20) 

We see that in a plasma the effective field coincides with the average field under the condition nD3 » 1 
which is usually fulfilled. For example, in the ionosphere, where according to Ginzburg1 n "" 1016 , T "" 
300°, we obtain Eeff- E "" 10- 5 E. 

The difference between Eeff and E increases as the density increases and as the temperature de
creases. However, even in an electric spark,4 where n"" 1017, T"" (4 x 104 ) 0 , the difference is Eeff 
- E "" 10-3 E, i.e., still negligibly small. 

The calculation of the effective field can be easily generalized to the case when a constant magnetic 
field H is present. For this it is sufficient merely to add to ( 17) the Lorentz force term - (e/c )v x H. 
For a field sufficiently weak so that Q = eH/mc « w0 this leads to the same result as before, while in 
the opposite case when Q » w0• l T7 H (HE) 

<E~ff )v = <E~ff )v = E- 4rrnD 3 (T i + Te)2 H 2 

= E for (i) .:'?> w0 

(21) 

We see that the frequency w = Q is not distinguished in any way. This can be easily understood since 
during the transit time of the electron through the correlation region which is of order "" 1/w0 no reso
nance effects have time to make themselves felt. 

It is easy to see the physical reason for the difference between the effective field from the average field. 
In the equilibrium state a correlated electron "cloud" is formed near each ion. When an electric field is ap
plied this "cloud" is displaced with respect to the ion, producing an additional field directed oppositely to 
the average field. In a strong magnetic field such a "polarization" occurs only along the magnetic field, 
which accounts for the form of formula ( 21). 

APPENDIX 

For the sake of completeness we shall briefly examine here the manner in which the collision term 
originates. We shall consider that the functions fe and fi vary sufficiently smoothly that they remain 
essentially constant over a distance D. Then it is possible in Eq. ( 18) first to neglect the time derivative 
and second to assume that cp;i = CfJei (r - r', v, v' ). On introducing a cylindrical coordinate system with 
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the z axis directed along v - v , and on setting cp;i = 0 for z = - oo we obtain from ( 18 ): 

{__1.___ ate(v) f·( ')-·i..t () at;(v') }v '( u(V()2+Z•) dz' 
m av ' v M e v (Jy' J I v - v' I 

-00 

and similarly for CfJii and CfJ;e. 
Substituting this into ( 7) and carrying out some straightforward calculations we obtain the collision 

term in Landau's form: 3 

St(f~)= (~~e') In(~)~~ _a_\ u'llik-uiud_1_ at,.(v) f (v')--1-f~(v) at0(:') J\dv'. 
'nx Po L.J L.J avk J u 3 \m av. ~ mo av. 

~ 1<, l=l a I ~ I 

Here a, {3 = e, i, uk = vk - vk is the k-th component of the relative velocity, and Po is the minimum 
impact parameter. 

We note that in such a derivation the cut-off at the maximum impact parameter is taken into account 
automatically, while if Eq. ( 11) had been solved more accurately, the cut-off at the lower limit would also 
have come out automatically. 

I express my sincere thanks to Academician M. A. Leontovich for discussions of this work. 
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