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We have calculated the differential cross section for the inelastic scattering of a neutron by a 
crystal with either emission or absorption of an arbitrary number of phonons. The first case 
is of interest when the temperature of the crystal is low, and the second when the neutron en
ergy is very small and the crystal temperature sufficiently high. Formulae are obtained for 
crystals with an arbitrary spectrum of the normal vibrations. If we choose a specific spectrum, 
the calculations can be pursued to the end, leading to a simple final formula. We have also 
given the formula for the limiting case of the scattering of high energy neutrons by a free nu
cleus. 

1. INTRODUCTION 

To investigate the interaction of slow neutrons with crystalline substances, one uses the De bye model of 
a crystal. In that case the transfer of energy from the neutron to the crystal is treated as the excitation of 
one or several "phonons," that is, quanta of the thermal motion of the crystal. The transfer of energy from 
the crystal to the neutron corresponds to the absorption of phonons by the neutron. These processes have 
often been considered in the literature. Weinstock1 derived formulae for the effective cross section for 
elastic and inelastic neutron scattering with the emission or absorption of one phonon (one-phonon proc
ess ) . The evaluation of processes involving simultaneously the emission and absorption of several pho
nons is in principle not difficult, but in practice very cumbersome. 

Squires2 in calculating the cross section for scattering of slow neutrons by Mg and Ni considered terms 
dmn corresponding to processes where m phonons are emitted and n phonons absorbed. For m + n 
2::: 2 he did not take into account the interference between the waves scattered coherently from different 
atoms. Squires' calculations agree well with his own experiments. The neutron energy in those experi
ments was very small ('< 0.003 ev), and it was therefore sufficient for the author to calculate several 
terms with the smallest values of m and n. In those cases where the number of phonons involved in the 
scattering can be large, the number of terms dmn contributing to the cross section also becomes large; 
it becomes therefore impossible to evaluate the cross section by evaluating every term separately, as was 
done by Squires, and it is necessary to develop a method for summing the terms dmn· 

In the present paper we calculate the cross section for inelastic neutron scattering by evaluating only 
processes of identical character: either only emission, or only absorption of an aribrary number of pho-

nons. In Squires' notation this corresponds to 
00 

L dmo and 
m= 1 

The formulae obtained have practical value in two cases. 

00 

L don· Interference is not considered. 
n=t 

1. The case of low crystal temperatures and sufficiently large neutron energies. In this case absorp-
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tion of phonons is unlikely, so that ~ dmo will give the total scattering cross section. (If the temperature 
of the crystal is not very low, one can evaluate from Weinstock's formula the cross section do 1 for scat
tering involving the absorption of one phonon.) Furthermore, if the neutron energy is sufficiently large so 
that several Miller planes are involved in the inelastic scattering, interference can be neglected (we are 
dealing with polycrystalline matter). However, the formulae have an exact meaning, independent of the 

number of Miller planes involved; namely, if we take instead of a2 the amplitude of the incoherent scatter

ing, ~ - (a)2, we obtain the incoherent part of the scattering of the neutron by the crystal. As the ratio 
E/8 (8 is the Debye temperature in energy units) tends to infinity, we find, as was to be expected, the 
formulae for the scattering of a neutron by a free nucleus. 

2. The case of low neutron energies and sufficiently high crystal temperatures. In this case it is very 
unlikely that the n6utron will lose energy; if the neutron wave length exceeds some critical value, the co
herent part of elastic and inelastic scattering, involving loss of energy, will in general tend to zero, so 
that the sum ~don will give the total inelastic scattering cross section. As regards interference, several 
Miller planes will be involved in the majority of substances even for zero neutron energy and the absorp
tion of one phonon by the neutron.3 The number of planes involved increases rapidly with increasing num
ber of absorbed phonons and increasing neutron energy.* Interference is thus of no consequence for prac
tically important cases. 

2. DERIVATION OF THE GENERAL FORMULAE 

Since the theory of the scattering of slow neutrons by a crystal is well known (see, for instance, Refs. 
1, 4, 5) we shall not discuss in detail the basic principles, but only remind our readers of them, and also 
explain the notation. 

The scattering is considered in Born approximation; for the interaction between the neutron and the 
crystal we take the potential 

R 

where r is the position of the neutron and R that of the nucleus, 

o:R = (2r:h2 / m) (I-+- m / MR) aR, 

where m is the neutron mass, MR the mass of the nucleus at the position R, and aR the scattering 
amplitude (depending in general on the nuclear spin). The sum is taken over all nuclei in the crystal. 

( 1) 

( 2) 

As far as we are interested in the average cross section of scattering by one nucleus, assuming no in
terference to be present, we must leave in the sum ( 1) only one term corresponding to the interaction with 

the given nucleus R = Ro, and replace aR by a, defined by the equation I a 12 =I aR 12, where the aver
age is taken over the nuclei of the lattice and their spins, 

V =ex)) (r- R). (1a) 

Considering a crystal consisting of identical atoms of mass M and taking for M the average mass of 
the isotopes, one can easily obtain in Born approximation a formula for the differential cross section (with 
respect to angle and energy) for the scattering by one nucleus, 

d2cr - k (2) (1-+- Ill )2 ~IF 12' (£ E E E) 
dQ.dE - k~- a ·A/( L; ' ""• ' 0 " -+- - "• - o , (3) 

where ko, E0, k, and E are the wave vectors and energies of the neutron before and after scattering, To 
and T the initial and final state of the crystal, and ET and ET the corresponding energies; F TTo is 
the matrix element of the operator 0 

F ==:c. exp {i (k 0 - k)·R 0}, (4) 

and '7 the square of the scattering amplitude averaged over the different isotopes and over the spins. 

* For instance, for neutrons of wavelength 10.5 A and scattering, involving one phonon by magnesium 
this number is 106 (Ref. 2). 
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We shall consider a crystal with a simple lattice and neglect the difference in mass of the various iso
topes. We shall go over to the normal coordinates of the crystal using the equations 

( 2 )'/, { 3 . } R - P ==Up = Jr ~ ~ Cs/;sjBsp , 
s j~l 

{sin q5 p, 
Bsp = 

COS q5 p, 

if qs E P + 

if qs E P _. 

(5) 

(6) 

where p is the equilibrium position of the nucleus and up the deviation from it. The vectors p form a 
spatial crystal lattice of N lattice points. Equation ( 5) is the expansion of up in a Fourier series in the 
wave vectors qs which form the so-called reciprocal lattice which has also N lattice points, in wave 
vector space. This space we divide into two half-spaces by an arbitrary plane through the origin. The no
tation qg E P + indicates that the end of the vector qg lies in a point of that half-space which we arbitrar
ily call the upper one, while qs E P_ indicates that qs belongs to the other (lower) half-space. The vec
tors esj are three unit vectors corresponding to the polarization of the vibration; one of them is parallel 
and the other two are perpendicular to qs. N is the total number of nuclei in the crystal which tends to 
infinity. Finally, ~sj are the amplitudes of the expansion which also are the new (normal) coordinates 
of the crystal. The "rave function of the crystal expressed in the new coordinates has the form 

o/- II <!J (" >· - - 1 nsj r;sj , ( 7) 
sj 

where 1/Jn is the funetion of the linear oscillator in the n-th excited state. The operator F expressed in 
the new variables has the form 

F = exp {i (ko- k) (p0 + u)} = exp {i (ko- k) Po} IT exp {i (k0 - k) Csj (2jN)'!•BsP,~sj}· (8) 
sj 

If we put the origin in the point Po where the nucleus under consideration is situated and if we take into 
account that 

we get 

{0, 
Bso = 1, 

p 

if qs E P + 

if qs E P _' 

F = IT exp {t (k0 - k) esi (2/N)'I·~sj}, 
sj 

(9) 

where the symbol p- above the n indicates that only variables referring to the lower half-space enter 
into the product. 

Thanks to the separation of variables in both the wave function and the operator the matrix element 
F TTo can also be written as a product 

p_ 

F ••• = n 
sj 

( 10) 

where nsj characterizes the initial state of the crystal and n~j its final state. It is easy to sh~w1 that 
as N- 00 the only final states that give a contribution different from zero are those for which nsj differs 
at most by unity from nsj for each pair of indicies ( sj ), and that in the expansion of the corresponding 
matrix elements it is sufficient to take along only the dominant term for N - 00 • These matrix elements 
have the form 

F~s!}.nsj = 1 ·- [(ko- k) CsjF h ( n + } )IN Mwsj + ... , (11) 

p<si) i (k k) ( 2h \ '/, 
nsj+l• nsf = V2 o- Csj N M"'si ) (nsj + 1 )'I• + ~ .. ' (12) 

p(sj) i (k k) ( 2h \'/, ( )" nsr-l,nsi =- ,r.-- o- esf N M"' . J flsj " + ... 
v 2 ~· 

( 13) 
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where wsj is the frequency corresponding to the oscillator ~sj of wave vector % and polarization esj· 
We consider the process of the emission of n phonons. This corresponds to such matrix elements 

F TTo where of the 3N factors in Eq. ( 10) n have the form F n+ 1, n and the rest the form F n, n. If we 

number those oscillators which are involved in the transition from 1 ton and write 

(14) 

where e is a unit of energy which can for the sake of convenience be chosen to be of the order of the mag
nitude of the Debye temperature of the crystal, we get 

n 

I (n) (2r \n ~ e F. 12 = e-2W --) cos2 cx:· (n· + 1)-
t".G N ' ' hw. ' 

i=l L 

(15) 

where e-2W, the so-called thermal factor, is the product of all I Fn ·n .12 with n finite and with N _...co. 
S] S] 

We introduce now the spectrum of the normal vibrations of the crystal, rp(hw ), in such a way that 
rp (hw) d(hw) is the number of oscillators ( sj) with energy hw within the interval d (hw ). The normali
zation condition is obviously 

00 

~ rp (hw) d (hw) = 3/11. ( 16) 
0 

Equation ( 15) must be multiplied by c5 ( E T + E - E To - Eo ) and summed over T. The summation over 
T is equivalent to multiplication by* 

n 

n 1/2 'f (hw;) d (hw;) 
i=l 

and integration over all d (hw) from 0 to co, replacing cos2 a by its average value % (this is always cor
rect for polycrystalline substances and for a single crystal provided the lattice is cubic). The result ob
tained must be divided by n! since states for which the excitation of the oscillators differs only in the 
numbering are identical (in corpuscular language this is the fact that phonons are identical). If the tem
perature of the crystal is T (in energy units ) we must replace ni + 1 by 

n; + 1 = (1- e-hw;Jrr!. 

Taking all this into account and introducing dimensionless quantities 

x = hwj8; s :== (E - £ 0) 8; rp0 (x) = (8J3N) rp (hw), (17) 

we get 

00 00 

Zn= !!~ ii-(x1)dx1 •.. ~ rl.(xn)dxno(x1 +···+Xn-s), (19) 
0 0 

where 

( 20) 

A completely analogous expression can be obtained for the absorption of n phonons; only ni + 1 must be 
replaced by ni so that A. ( x) has the form 

/, (x) = x-1 cp0 (x) (exO/T- If!. (21) 

We introduce the Laplace transform of zn considered as a function of E: 

00 

,._ \ rn r-..-

Zn(s) =) Zn(s)e-•sds = n1 p,(s)Jn, (22) 

where 

*The factor % arises because the summation is over a half-space. 
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00 

f(s) = \ i,(x)e-sxdx, 

We sum over n, 
00 

~ Zn (s) = ~ [r'T (s)r';'n! =e r"i:(s)- I. (23) 
Jlo-c._l n"---1 

Transforming back we get 
a+ico 

z (s) = >: Zn =ziT ~ {er'1:(s) --I} e"ds, 
n'--"1 cr-ioo 

(24) 

Taking E qs. ( 3 ) and ( 18 ) into account we find 

(25) 

The thermal factor is calculated without any difficulty 
00 

1 ___ ~ 'Po (x) r 1 1 \ . 
W -- r -x-1~- + :2 rdx. 

\ e · -- 1 1 
(26) 

0 

3. EXAMPLES 

We consider now two examples, choosing a definite form of the function cp 0 (x). The usual Debye spec
trum has the form 

{
3x2 

?o (x) = 0 
if 
if (27) 

and e is called the Debye temperature of the crystal. This function is very inconvenient for computations. 
We assume a different form for cp 0 (x), namely, 

(28) 

This function satisfies the normalization condition ( 16), goes to zero as x!- and contains a cutting-off fac
tor e-f3x. The dimensionless quantity {3 which is of the order of unity can be varied. 

In the two limiting cases, discussed above, we can easily pursue the calculations unto the end. 
1. Scattering of slow neutrons by hot substances, T » e. From Eq. ( 21) we get, accurate up to terms 

of the order xe /T, 

/, (x) = 'Po (x) _T_ e-x8/2T = 'TA" exp {- (R + -~-) x} 
-- X X H 2(-1 t' 2T . (29) 

Its Laplace transform is 

f. (s) = T~3j28 (~ + 8j2T + s). 

Moreover, from E q. ( 24) we get, omitting the intermediate calculations, the following result 

(30) 

where I1 is the Bessel function of imaginary argument. 
2. Scattering of neutrons by cold substances, T « e. We have from Eq. (20) for the emission of an 

arbitrary number of phonons by the neutron, 

(31) 

Its Laplace transform is 

f (s) = Ij2 ~a(~+ sp. (32) 

Again omitting the calculations we quote the result following from Eq. (24) 
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(33) 

where 
00 

f (x) = ~ xnjnl (2n- l)l (34) 
n-1 

Since the expansion ( 34) is in powers of r, it is an expansion in the number of phonons involved in the 
scattering process. The condition that it is necessary to consider only one-phonon processes is, obvi
ously, x « 1. Since %,83 1'::1 1 we get, if we take into account Eqs. ( 14) and ( 17) 

(p,,- p)2 _! (E- Eo)2 ~ I 
2M e e• ~ · 

Hence we get the following condition for the initial energy 

(mjM) (E0 /8) 3 ¢;;. I. 

(35) 

( 36) 

If inequality (35) is taken in the opposite sense, the main contribution comes from many-phonon proc
esses. In Eq. ( 34) there are many terms which are important. Using the Stirling formula and differen
tiating with respect to n we find the value n0 for which the expression under the L: sign is maximum 

In x +In (ljn0)- 2ln (2n0 - I)+ 0 (l/n0) = 0, n0 = (x/4)'1•. (37) 

In this way we find the most probable number of phonons which will be emitted for a given angle of scat
tering and energy loss (which determine r and E), 

(38) 

If 8 tends to zero we must obtain the. scattering by a free nucleus. From Eqs. ( 14) and ( 17 ) it follows 
that as 8 - 0, r - 00 , E - oo. For large values of x one can obtain the following asymptotic equation 
for f (x) 

f (x) = (x/4)' 1• (3~t)-'l. exp {3 (x/4)'1•}. (39) 

From Eqs. (26) and (28) we find 

W = ~rj4 for T = 0. (40) 

If we perform successively the various limiting transitions we get 

e-zW 1 [(Po- p)2 J 
- 11-z(r, s) ~if o(r-s) = o 2M -!:i.E , (41) 

(42) 

This is, as can easily be seen, the cross section for scattering by a free nucleus. Indeed, the 6-function 
in Eq. ( 42) assures the conservation of energy provided momentum is conserved {the momentum taken 
up by the nucleus is equal to Po - p ). Integration over the angles gives 

!!_a_ __ {4·;r (a2)/l:!.Emax for 0 < E0 - E < l:!.Emax 
dE- 0 for E0 -E>l1Emax, or E0 -E<O, 

(43) 

where 

l:!.Emax = E·4Mm/(M + m)2. (44) 

Integration over the energy gives 

(45) 

In the figure we have given as an illustration the cross section d2o/dQdE for a given angle of 90° as a 
function of the relative energy loss ~E/E 0 for M/m = 9. The value of ,B was takf)n to be 3. In this case 
the thermal factor ( 40) coincides with the thermal factor for the De bye spectrum. It can be seen from the 
figure how for increasing E 0/8 the cross section tends to the ~function ( 42) since for the scattering by 
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Energy distribution of neutrons 
scattered by a crystal over an angle 
of 90° . The numbers indicate the 
value of E/e. The scale of the 
curve for E/e = 1 is increased 10 
times with respect to the other 
curves 
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a free nucleus the energy loss is simply by the angle of scattering 
from the laws of conservation of energy and momentum. For E/e 
= 100 the width of the curve is still fairly large. In a real crystal 
the approach to a c5-function will, apparently, occur fast owing to 
the possibility of knocking a nucleus out of the lattice, a process 
not considered in our paper. 

The calculations, using Eq. ( 34 ), can be simplified by using the 
circumstances that for x $ 10 the series ( 34) converges very 
rapidly, while for x ~ 10 the asymptotic formula 

logf (x) = 0.8207 ·x'l, + {Ior;x -0.5875-0.1028 x-'!,, (46) 

is correct with a large degree of accuracy. 
In conclusion the author expresses his gratitude to A. S. Davy

dov and V. M. Agranovich for valuable discussions and sugges
tions. 
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A quantum kinetic equation has been obtained for a system of particles with Coulomb interac
tion. This equation differs from the known quantum kinetic equation by the fact that correlation 
of the mutual positions of charged particles has been taken into account. 

A quantum kinetic equation for a set of interacting particles can be obtained by solution of the system of 
equations for the quantum distribution functions f1 and f2 •1•2 In this case the function f3 which enters 
the equation for the distribution function f2, is expressed approximately in terms of the functions f1 and 
f2• For a solution of this system of equations, quantum conditions for the vanishing of correlation at in
finity are necessary. However, as was noted by N. N. Bogoliubov, the solution of the equation for the den
sity matrix (or, correspondingly, for the quantum distribution function) can be reduced to a solution of the 
equation for the quantum function Fs with classical boundary conditions. Here fs = 'YsFs, 'Ys is the 
symmetrization operator for s particles. In the case of systems with central interaction, the equations 
for F1 and F2 have the following form: 


