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Instability of flow of a superfluid film with respect to the appearance of wave motion on its sur
face is shown to be theoretically possible. The value obtained for the critical velocity is ap
preciably greater than the experimental value. The problem of the shape of a He II film moving 
in a gravitational field has been solved by taking into consideration hydrodynamic forces, sur
face tension and Vander Waals forces. 

'fiiE phenomenon of superfluidity, discovered by Kapitza1 in 1938, received its interpretation in the sub
sequent development by Landau2 of a two fluid model of the quantum liquid. Landau derived the hydrody
namic equations of He II by starting out from the conservation laws. Later, Khalatnikov3 obtained them 
from the Boltzmann equation for the excitation. It was established experimentally that the superfluidity 
is destroyed at sufficiently small velocities of flow. This should be connected with the instability of flow 
of the liquid with respect to the appearance of a different type of excitation. Unfortunately, it is not pos
sible to investigate the appearance of instability in the general case and we must consider each specific 
type of excitation separately. Thus, it is necessary that the flow velocity exceed the sound velocity for the 
appearance of an individual phonon, while for the appearance of a roton it need exceed the quantity ~/p0 
...., 60 m/sec. These values are appreciably larger than the real critical velocities. Actually, it is evident 
that the destruction of superfluidity is connected with the appearance in the liquid of vortex filaments of 
the Onsager type, as was shown by Feynman.4 However, a quantitative criterion for the loss of stability 
can be obtained only for the case of the rotation of a cylinder in the superfluid.* 

*Consider the following simple calculations. A single vortex creates a velocity distribution Vs = n/mr 
in the superfluid component. The corresponding kinetic energy per unit length is 

and the momentum per unit length 

~ ''! . 'fL2 R p ~ -~ 2rrrdr = rrp -- 1 n -
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(m is the atomic mass of helium, R the radius of the vessel, and ao the distance between atoms). The 
part of the free energy per unit length of a column of fluid depending on Q is 

1 !0.2 71 2 R 
F ~~ -- p rrR40.2 + ~ +rrp --In--

4 n 2 s nt2 ao ' 

while its momentum is 

(I is the moment of inertia of the vessel). In the state of thermodynamic equilibrium, the following quan
tity must have a minimum: 

F- MQ. =- _1_ p rrR40. 2 - 1 ~22 + rrp -~ (-fl_ In R - D.R• l . 
4 " 2 s m m a 0 ; 

Formation of the first vortex is favorable when the last term becomes negative, whence 
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Extension of the formula for the rotation of a cylinder to an estimate of the critical velocity in the case 
of a slit of a film gives excellent order-of-magnitude agreement with experiment. In the present paper we 
consider one additional mechanism: the loss of stability in superfluid flow in a film, brought about by the 
appearance of an unusual vibration, and the transition of the flow to the wave regime reminiscent of the 
studies of Kapitza.5 The phenomenon is analogous to the instability of a tangential disturbance.s,sa It re
duces to the dissipation of energy in the normal component and to the appearance of a damping force. Al
though the values of the critical velocity computed in this way considerably exceed the experimental, con
sideration of the problem presents methodological interest. Moreover, there is the hope of isolating the 
mechanism experimentally, about which more will be said below. 

We consider an incompressible superfluid which forms a layer of thickness h on the surface of a solid 
wall. As the unperturbed motion, we take v~ = U = const, v~ = 0 and look for a first approximation in the 

form of a traveling wave eikz -iwt. We draw the x axis perpendicular to the surface and consider x 
= - h the bounding coordinate between solid and liquid. For the incompressible fluid, as is well known, 2 we 
can write the equations for the normal and superfluid components separately; for the normal component it 
suffices to use a linearized equation. The system of equations for superfluid hydrodynamics can be writ
ten in the following form: 

Vs = V'P, ~? = 0, avn I at= v~v/1- (I/ i'n) Vpn, div Vn = 0. 

Here p = Pn + Ps is the total pressure, Ps = - PsBcp /Bt - Psv~/2, 17 = PnV is the viscosity of He TI. 
The solutions satisfying the boundary conditions 

Vnx = Vnz = 0, Vsx = a'f I ax= 0 for X~~ - h, 

have the form 

cp = aei(kz-wt) cosh k (x +h)+ yU y+ zU z, 

Vnz = ei(k;&-wt) {A [sinh k (x +h)- ~ sinhm (x +h)]+ B [cosh k (x +h) -coshm (x +h)]} , 

Vnx = ei(kz-wt) {- iA [cosh k (x +h) -cof!h m (x +h)] - iB [sinh k (x +h)- ! sinhm (x + hJl} , 

Pn = p, r ei<kz-wtl [A sinhk (x +h)+ A coshk (x +h)]; 

We now introduce the quantity 

~ = bei(kz-oot), 

( 1) 

(2) 

(3) 

which describes the vibration of the boundary, and write down a set of boundary conditions at the free sur
face (for x = 0 ) . For simplicity, we shall not consider the effect of the vapor. 

The rate of change of the x coordinate of the surface is equal to the velocity vnx of the normal com
ponent: 

a~1at = Vnx (4) 

and, on the other hand, can be expressed by means of the velocity of the superfluid component 

0~ -~-U ~-U ~-~-U ~ at - ax z az Y oy - ax z az ' 
. a; o .smce oy = . ( 5) 

Moreover, the component axz of the momentum flux tensor should be equal to zero on the surface, whence 

'ii (avnz I ax+ avnx I az) = o. 
Finally, the latter condition expresses the equality axx with the total force acting on the liquid. After 
linearization, we have 

(6) 

(7) 

Here a is the surface tension, the first two terms correspond to the pressure of the superfluid, while the 
term py ~ corresponds to the force which is connected with the Van der Waals interaction of the film with 
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the substratum.* We note that only the Uz component of the velocity is involved, and will therefore put 
everywhere U = U z. 

Upon substitution of the solutions ( 2) ( 3) in the four conditions ( 4) to ( 7 ), we get a system of four ho
mogeneous linear equations, which can be solved if their determinant vanishes. After evaluation of the 
determinant and rather lengthy transformations, we get an equation for w: 

w2 - 2 ~ u kw- k2 [(.:.!...._ + :':!:._ 'tanhkh- ~ U 2 ] = - ~w2 [..!!__ tanhmh + 4 i vk2 (1- 2 }!__ tanhkhtanhmh- -----;-:-:1-,-- \ 
p k p J p p msinhkhcoshkh w m coshkhcoshmh} 

-8 v2k4 (1-..!!_tanhkhtanhmh- 1 )]/[I -(kim) cothkh tanhmh]. 
w2 m coshkhcoshmh 

( 8) 

Even if only one of the roots w of this equation has a positive imaginary part, the motion will be unstable. 
For the investigation of Eq. (8) we call attention to the fact that when the square bracket on the left side 
is equal to zero, then the equation certainly has the root w = 0. In order to establish this fact, we expand 
the numerator and replace the right hand side by m2 - k2 = iw/v. Neglecting terms~ w2, we get 

2 _P~ Ukw + k2 [ ( _l + '!:.!:__ \anhkh-~ U2]=- 2 i ~ vk2w 1 + k2h2 fcosh•kh. 
p \ k p) p . p 1-2kh/sin1>2kh' 

_f__ (.J.... + ::!!__ \,tanhkh.- lj2 
Ps k p I w = k2 ___ _:c__:__ ___ -;---;-:-------

2i~vk2(1 +~)/ (1-~) -2Uk 
Ps cosh• kh sin1>2kh 

( 9) 

It is evident from the last equation, in particular, that if 

U2 >min :s ( r + a.Pk) tanh kh, ( 10) 

then there always exists a region k where Im w > 0 and, consequently, the motion is unstable. Investiga
tion of the expansion of the right side of Eq. (8) under the limiting conditions vk2/w « 1 and vk2/w » 1 
shows that the inequality ( 10) is not only a sufficient but is evidently a necessary condition of instability. 

We can put the condition ( 10 ) in parametric form in terms of k, which corresponds to the minimum 
U2 (k). Replacing the velocity by the volume flow Q = PsUh/P, and expressing y in terms of a and h, 
we get the following expression for the transfer rate 

Q2 = ~(3a + rtkh2
) h kh 

P kh" P tan ' (11) 

where k is determined from the condition 

si:U,2kh = (I+ ak2h4 ) /(I- a.k2h4) 
2 kh \ 3 ap 3 ap ' 

(12) 

whichexpresses oU2/ok=O. ExpandingEq. (12)inaseries,wecanseethatfor h> (ap/a)1/ 2,Eq. (12) 
has only k = 0 as a root. 

In this case the transfer rate is expressed by the formula 

Q = (3 aps I hp )'I•. 

For h = (ap/ a)112, a root k = 0 appears, which quickly increases with increasing h. For sufficiently 
small h, kh » 1, and we can determine k by letting the denominator of the right side of Eq. ( 12) vanish; 
this yields: 

kh2 = (3 ap I rx)'1•. 

In this case the discharge tends to the h.-independent value 

Q = (PsI P )'1' ( 12 arx I p) 'I•. 

* The thickness -dependent part of the chemical potential of the film is known from Ref. 7 to be - am/h3 

while the pressure is ( 3am/h4 ){ p /m )~, where ~ = iih. Thus y = 3a/h4 (a "' 10 -t5 is connected with the 
thickness of the static film by the relation gz = a/h3 ). 
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A plot of Q2 vs. h is shown in Fig. 1. 
For a complete solution of the problem we must solve simultaneously the equations ( 11) and ( 12) for 

the transfer rate and the equation for shape of the film in a gravitational field with account of the Vander 
Waals forces, the forces of surface tension, and the hydrodynamic pressure acting on it. In the case of 

2 

~----~---L----------L-------~---h 
t/YJ , z 

FIG. 1. Broken line shows the dependence 
of Q2 [in units of (P.s/p)(aa/p)i/2 ] on h 
[in units of (ap/a )112 ]. The point of inter
section of this curve with the curve of ( 19 ) 
determines the critical thickness and transfer 
rate in the film. 

stationary flow of the superfluid, we have, from the equa
tion of Ref. 2 

av s 1 at + v (fL + v; 1 2) = o 

the relation J.L + u~/2 = const on the free surface. Elim
inating the velocity dependence from the chemical po
tential J.L, the gravitational forces, Van der Waals 
forces T and the surface tension, we get an equation which 
determines the form of the film: 

(13) 

The constant here is so chosen that, upon neglect of the 
Vander Waals forces and the hydrodynamical term, we 
get an equation for the capillary meniscus, wherein 
measurement of the height is taken from the horizontal 
surface of the liquid. In a region located at a sufficient 
distance from the "bounding" meniscus, 

z0 = (2 oc / pg)'", 

and the form of the film is described by the equation of the capillary meniscus8b 

(14) 

At heights much greater than z0 we can neglect the effect of the surface tension; moreover, taking it into 
account that dh/dz is very small in this region, we can express Vs on the surface in terms of the dis
charge Q = PsVsh/p. We then obtain an equation describing the shape of the film in this region: 

( 15) 

We can see from the shape that the thickness of the film decreases upon increase in the discharge. This 
result was obtained by Kontorovich.8 

At points close to the boundary of the static meniscus, I z - z0 I « z0, we can consider approximately 
that gz = gz0 in Eq. ( 13 ). Moreover, the value of the derivative dh/dz is sufficiently small that we can 
neglect it in the term with the surface tension, and express Vs in terms of the discharge. As a result, 
we get the following equation for the solution of the combination of Eqs. ( 14) and ( 15 ): 

(16) 

which does not contain z and which can therefore be integrated by successive quadratures. The result 
h 

z + c = - \ dh {2h (2pg)'l, + J:_ !!_ - pZQZ + c }-'/• 
. 2 ~ a a h2 psah 1 (17) 

depends on two constants of integration, by the choice of which we can join the upper and lower solutions. 
Here we have a large parameter A~ 104, which has the meaning of the ratio of the capillary constant z0 
to the thickness of the film at the height of the boundary of the capillary meniscus Ho = ( a/gZo )112 • Con
sideration of conditions of continuity of z and dh/dz (written in non-dimensional form) at the point ho 
of the junction of the solution of ( 17) with the solution of ( 15) shows that for arbitrarily large A, the 
following conditions must be satisfied: 

(18) 

(19) 
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In these conditions there appears the parameter ho, which is determined by the discharge Q [from 
Eq. ( 19)] and which is a multiple root of the expression found under the radical in the integral in ( 17 ). 
In the case of a multiple root, the integral is written in terms of elementary functions, which gives 

;- a 2 (ap ·1h~ ) -'/, -1 h + ho + ajgz0h~ 
Z = Z0 -l 1 Z0h + --2 + h0 - - + -_- COS I h . 

t 2gho a "n - l- o 
(20) 

Joining of the solution in the region of the meniscus is done automatically; this is demonstrated by expand
ing Eq. ( 14) near z0, giving the formula 

h = (z- z0)2/zo, 

which coincides with that in (20) for z0 » h » ho and ho » (ap/a )112• A graph of the function (2 ), which 
describes the shape of the surface, is given in Fig. 2. 

The condition for stability can now be written in the form 

f (h)- Q2 ::> 0, 

, where f (h) is determined by Eqs. ( 11) and (12 ). Increase in the flow Q brings about a change in the 
function at the left side, for the condition of stability, by an amount 

[ df ( ah) I]'Q2 • 
dh \ dQ 2 z- 0 ' 

df/dh is always negative, since f is a monotonically decreasing function of h: (8h/8Q2 )z is also always 
negative, inasmuch as the thickness of the film decreases with increase in its velocity. As calculations 
with Eqs. (15) and (20) show, the minimum value of (df/dh){8h/8Q2 )z is assumed at ho. where the first 

z 

z 

" 
FIG. 2. Curve 1 corresponds 

to the shape of the capillary men
iscus [ Eq. ( 14 )]. Curve 2 corre
sponds to Eq. ( 15 ). Curve 3 is 
the joined solution ( 20 ) ( Q = 0). 
Curve 4 corresponds to the shape 
of the film for large discharges 
(22 ), when the meniscus disap-
pears. 

condition of stability for growth of the discharge is disturbed. Simul
taneous solution of the equation for ho ( 19) and the discharge [ Eqs. 
( 11) and ( 12 )] gives, with considerable accuracy, 

h0 = (ap j3 a.)'1•, 

Q2 = (p./p)(l2aa.jp)'1•; 

(21) 

(22) 

here kh ,..., 3 and the error in Eqs. ( 21) and ( 22) is of the order e -s 
,..., 1/400. For the value of ho = (ap/3a )112 that is obtained, the so
lution (20) is already unsuitable, for in this case the derivative 

dh _ h - h0 • / 4 h + ap 
dz-- -h-v -Zo aho 

is of the order pf unity in a very small region h ,..., ho. This comes 
about as a result of the strong hydrodynamic compression of the film 
at large discharges Q. As a result, the meniscus disappears and the 
film should have a constant thickness ho along almost the entire 
height. An exact determination of the shape of the film under these 
conditions is extremely difficult, since, in addition to calculation of 
dh/dz in the capillary term of Eq. ( 13 ), we would also be obliged to 
solve it simultaneously with the equation for the potential flow of the 
superfluid component, in view of the fact that the velocity v s on the 
free surface is no longer expressed in simple form in terms of the 
discharge. However, we can consider that this difficulty does not les
sen the value of Eq. ( 22) for the transfer rate. Let us estimate the 
damping forces which arise in the presence of a developed wave re
gime. We shall consider that for U,..., 2Ucr• the amplitude of the 
waves on the surface is of the order of the thickness of the layer. As

suming that in order of magnitude hdp/dz,..., axz; ayz,..., 7JVm/h; vn,..., wh, we get hdp/dz,..., pnvw; we can 
estimate w from Eq. (9 ): 

w ~ (U~r- U2 ) /(Pn/Ps) v. 

As a result we obtailn 
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dp f'sU' P Q' 0.: I p)'l, P ( a. )z 
di~f!=Pp; fi3=P(apfa.) 1'=a--;;- · 

The ratio of this quantity to the actual hydrostatic pressure is of the order 

(oc/ p)~ / ag ~ IQI2, 

i.e., loss of stability carries an extraordinary rigid character, and the value of the critical discharge is 
very close to Eq. (22 ). 

95 

Many measurements of the phenomenon of helium transfer along a film are described in the litera
ture.9•10 These give approximately the same temperature dependence of the volume discharge Q. They 
show that this dependence can be represented, within the limits of error, as Psi p or (Psi p )112, wherein 
the first formula describes the experimental data somewhat better. 

Equation ( 22) gives the temperature dependence of the discharge proportional to (Psi p )112, which does 
not contradict the experimental data. However, if we calculate a by the formula gz = alh3, considering 
that at z = 1 em the thickness of the film h"' 2.0 x 10-6 cm11 , we obtain a"' 8 x 1015 and when the value 
a = 0,35, measured along the rise in the capillary, 12 and p = 0.145 are substituted in the formula, we get 
for the discharge Q ~ 6.9 x 10-4 cm21sec, which is considerably larger than the experimentally observed 
value 1. 7 x 10-4 cm2 I sec. The corresponding critical thickness of the film is of the order of atomic di
mensions: h"' 3.4 x 10-8 em, and is extraordinarily small. The thickness of the film was measured si
multaneously with the flow only in a single work, 13 in which Q = 1.68 x 10-4 cm21sec, and h = 1.66 x 10-6 

em for T = 1.5°. 
The value of the thickness differs sharply from what has been expected; this points evidently to the ac

tion of a mechansim of destruction of the superfluidity, different from the described formation of a vortex. 
However, the effect of flow on the thickness of the film should be carefully noted, since the film ought to 
experience considerable hydrodynamic compression. An increase in the thickness of the flowing film of 
about 20% has already been observed by Burge and Jackson.14 

In conclusion, we note that there is reason for assuming that if the formation of vortices is due to the 
destruction of superfluidity, then we can expect that this process requires an appreciable time (in the 
experiments of Hall and Vinen15 vortices were formed within a time on the order of a minute). 

In this case the mechanism just described takes place, yielding a much higher value of the discharge. 
According to our calculations, the capillary meniscus ought to disappear during the time of action of this 
mechanism. Also, during this time vortices evolve in the film and the discharge is established. The shape 
of the film will be described by Eqs. (15), (20), and (14) at all regions of height. 

I regard it as my pleasant duty to express my deep gratitude to L. D. Landau and I. M. Khalatinkov for 
constant discussions on the work and for valuable advice. 
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We have calculated the differential cross section for the inelastic scattering of a neutron by a 
crystal with either emission or absorption of an arbitrary number of phonons. The first case 
is of interest when the temperature of the crystal is low, and the second when the neutron en
ergy is very small and the crystal temperature sufficiently high. Formulae are obtained for 
crystals with an arbitrary spectrum of the normal vibrations. If we choose a specific spectrum, 
the calculations can be pursued to the end, leading to a simple final formula. We have also 
given the formula for the limiting case of the scattering of high energy neutrons by a free nu
cleus. 

1. INTRODUCTION 

To investigate the interaction of slow neutrons with crystalline substances, one uses the De bye model of 
a crystal. In that case the transfer of energy from the neutron to the crystal is treated as the excitation of 
one or several "phonons," that is, quanta of the thermal motion of the crystal. The transfer of energy from 
the crystal to the neutron corresponds to the absorption of phonons by the neutron. These processes have 
often been considered in the literature. Weinstock1 derived formulae for the effective cross section for 
elastic and inelastic neutron scattering with the emission or absorption of one phonon (one-phonon proc
ess ) . The evaluation of processes involving simultaneously the emission and absorption of several pho
nons is in principle not difficult, but in practice very cumbersome. 

Squires2 in calculating the cross section for scattering of slow neutrons by Mg and Ni considered terms 
dmn corresponding to processes where m phonons are emitted and n phonons absorbed. For m + n 
2::: 2 he did not take into account the interference between the waves scattered coherently from different 
atoms. Squires' calculations agree well with his own experiments. The neutron energy in those experi
ments was very small ('< 0.003 ev), and it was therefore sufficient for the author to calculate several 
terms with the smallest values of m and n. In those cases where the number of phonons involved in the 
scattering can be large, the number of terms dmn contributing to the cross section also becomes large; 
it becomes therefore impossible to evaluate the cross section by evaluating every term separately, as was 
done by Squires, and it is necessary to develop a method for summing the terms dmn· 

In the present paper we calculate the cross section for inelastic neutron scattering by evaluating only 
processes of identical character: either only emission, or only absorption of an aribrary number of pho-

nons. In Squires' notation this corresponds to 
00 

L dmo and 
m= 1 

The formulae obtained have practical value in two cases. 

00 

L don· Interference is not considered. 
n=t 

1. The case of low crystal temperatures and sufficiently large neutron energies. In this case absorp-


