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for a, {J :/:. z,z and 

H { [ _ _ 2 ( oq~z aqzz ) J [ _ _ 2 oq~z aq~z ) J } 
D.azz =- (1 + fL)~o f' (q~z- q~z) -3 ~0 ~- o~0 D.Mi + f1 (qfz- q2z) + -3- f'~o ( ~-~ D.M; ' (51) 

where J.L = m2/m1 , and the mobilities are determined from Eqs. ( 44) in which one substitutes in the case 
of the electrons m* = m 1 , and for the holes, m* =- m 2• 

For the extreme cases J.L >>1 or J.L <<1, one can leave out some of the terms in Eqs. (50) and (51); 
however, the general character of the expressions does not change. 

Eqs. (50) and (51) show that the assumption N+ =~does not introduce any fundamental simplifi­
cation of the general expressions for D.aa/J. 
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The emission and absorption of light at high temperatures in a shock wave front in air are 
considered. The dependence of the brightness of the shock wave front on its amplitude is 
derived. 

IN our preceding article1 * we considered in a general form the problem of the internal structure of the 
front of strong shock waves in gases, taking account of radiation. We operated throughout with integral 
characteristics of the radiation- the total energy flux and density. Also, passing from the geometrical 
coordinate to the optical thickness, we excluded from consideration the actual distribution of quantities 
iri space, which is determined by the coefficient of absorption of light in the gas. This approach is in-

*Hereafter referred to as I. 
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adequate when we are interested in the flux of visible radiation passing from the wave front to infinity 
(brightness of the wave front), the measurement of which is one of the important experimental methods 
for the study of shock waves and the determination of their amplitudes. 

The brightness depends in an essential way on the coefficient of absorption of visible light at various 
points of the wave front, and on the distribution of the light sources, i.e., the temperature distribution in 
the wave. 

In I, temperature profiles were obtained as a function of the mean over the spectrum of the optical 
thickness. Therefore" to calculate the brightness it is necessary to find the relation between the coef­
ficient of absorption of visible light and the mean over the spectrum. The latter is determined by the 
character of the radiation spectrum involved in the transfer of energy in the wave, which in turn de­
pends on the coefficients of absorption of the various frequencies at different temperatures. 

These questions are considered in the present article as applied to air. The results will allow us 
to draw conclusions regarding the general character of the relation between the brightness or effec­
tive wave temperature and the temperature behind the shock wave front. 

Let us recall that by effective (visible) temperature we mean the temperature that a black body 
would have to have in order to give exactly the same flux of visible light as passes from the shock 
wave front to infinity. 

1. COEFFICIENT OF ABSORPTION OF LIGHT BY AIR 

We begin with low temperatures. Cold air, as is well known, is transparent to visible light. Strong 
molecular absorption begins in the ultraviolet region; the absorption coefficient reaches the value K11 
~100 cm-1 for hv·~ 8ev *at normal density.2 

Quanta with energy greater than the ionization potentials of oxygen and nitrogen molecules, I02 

= 12.5 ev, IN = 15.5 ev (for atoms, I0 = 13.5 ev, IN= 14.5 ev), undergo strong photoelectric absorption. 
The effective2 absorption crossections from ground levels depend only slightly on frequency in the inter­
val Izhv to hv = 25 ev, and are a0 = 3 x 1o-:18 cm2, aN= 5 + 10-18 cm2 per atom,3 which gives Kv 

= 120 em. As the frequency increases, the absorption coefficient goes through jumps corresponding to 
the successive inclusion in the absorption of various electrons filling the L-shells of oxygen and nitro­
gen atoms. The L-shell levels do not differ too strongly from one another, so that the jumps appar­
ently lie in the frequency region from hv = 13 up to hv ~ 30 ev. At higher frequencies the absorption 

TABLE I 

h11 (ev) Kv <cm·l) Ref. 

8 
13-25 

182 
280 
410 
415 

100 

120 
12 
5.3 
1.6 

35 

2 

3 

4 
5 

6 
7 

decreases monotonically up to quanta with energy hv = 410 ev, equal to the bind­
ing energy of K -electrons in nitrogen ( 530 ev in oxygen). Experimental data on 
the absorption of intermediate frequencies between the far ultraviolet and soft 
x-rays is extremely scanty. Combining the various data, we may set up Table I 
as an approximate representation of the absorption coefficient in this region. 

At not too high temperatures, lower than z 30,000°, when the degree of ion­
ization is not great, quanta with energies less than the ionization potentials are 
absorbed principally by photoeffect with excited levels of neutral atoms (and 
molecules) of oxygen and nitrogen. For an estimate of this absorption we may, 
as is commonly done in astrophysics. use Kramer's formula, derived for hydro-
genlike atoms and ions. The formula for Kv, integrated over the levels taking 
account of their degree of excitation, has the form: 8 

_ 161t2 ~ kT hv/hT ""z2 . -I ·LkT 
><v - 3 V3 he (hv)" e kJ ,n,e '~ • 

i 
(1) 

The summation is carried out over all the types of atoms and molecules ( ni is the number of these 
particles per cubic centimeter). Zi is the effective charge of the atomic residue, which according to 
Ref. 8 should be set equal to Zi = 2.5. t 

The temperature dependence is apparently represented correctly by the Boltzmann exponential fac­
tor. Taking account of the equilibrium composition of air at the various temperatures, we may use this 
formula to calculate the absorption coefficient for red light, hv = 1.91 ev (A.= 6500 A), which is com-

*It will be convenient in what follows to express the frequency in electron volts. 
tModel' 's data9 are in satisfactory agreement with this value. 
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monly used to photograph shock waves (see Table II; concern­
ing the last two values in this table, see below). Kv depends 
extremely sharply on temperature because of the high ion­
ization potentials. 

The absorption coefficient ( 1) considered as a function of 
frequency at a given temperature has a minimum at hv = 3kT. 
Eq. ( 1) may be used only for values of hv sufficiently small 

TABLE II 

10-'·T I 11 I 12 1151 17 120 130 150 1100 

><v I 0.091 0.31 14.1,13.5160 1290135012000 

with respect to unity, when the absorption occurs in highly excited levels which may to some extent be 
considered "hydrogenlike." Both Kramer's formula and the replacement of summation over levels by 
integration become inapplicable at hv ~ I. 

A rough estimate of the absorption at hv =I may be obtained from Kramer's fromula for the absorp­
tion in the ground level of a hydrogenlike atom,8 which for air gives 

(2) 

At hv -I, Eq. ( 2) gives the correct order of magnitude ( Kv :::::::; 100 cm-1 ) with Z = 2. The absorption 
coefficient has a maximum at hv = I. 

Absorption at high frequencies, hv >> I, and not too high temperatures, when air consists principally 
of neutral atoms, takes place in the same way as in cold air, i.e., according to Table I. 

At high temperatures the atoms are strongly ionized, and as a rule, at every temperature air con­
sists principally of ions of two multiplicities: at T = 50,000° singly and doubly ionized, at T = 100,000° 
doubly and triply ionized, etc. The absorption of quanta with energies less than the lowest ionization 
potential of the ions present in sufficient quantity* may be estimated by a formula of type ( 1). The 
last three numbers in Table II were obtained in this way. 

The maximum absorption, corresponding to hv = I min• may be estimated by Eq. ( 2), setting Z equal 
to the charge of the ion. The magnitude of the maximum decreases with Z, i.e., with increased temper­
ature, and is of the order Kv "' 100 to 10 cm-1• Then, with further increase of frequency, there are suc­
cessive maxima corresponding to the inclusion in the absorption of different ions (more exactly, differ­
ent levels of different ions), and at sufficiently high frequencies, Kv decreases monotonically with in­
creasing frequency up to the K-jump. 

This is the general picture of the absorption of light in air. The state of theory in connection with 
this question is such that it is very difficult to go further than crude estimates of order of magnitude 
and the establishment of qualitative relations, which naturally shows in the 
character of the conclusions regarding the spectrun and effective temperature. 
The qualitative dependence of the absorption coefficient on frequency at a 
given temperature is illustrated by Fig. 1. 

2. THE CHARACTER OF THE RADIATION SPECTRUM IN THE HEATING 
ZONE AND THE ABSORPTION COEFFICIENT 

AVERAGED OVER THE SPECTRUM 

The radiation emanating from the surface of the discontinuity of a strong 
shock wave is absorbed in the gas layers lying in front of it and heats them. 

In I, temperature profiles were found in the heating zone, assuming constant 

JHT 

FIG. 1 

heat capacity. In air as well as in other gases, the heat capacity at high temperatures depends on 
temperature because of ionization processes. In this regard, all the relations in I concerning the heating 
zone must be generalized somewhat. Thus, the condition that the flux of radiant energy and the hydro­
dynamic flux are equal ( Eq. 12 in I) is now written in the form: 

S = Dp0s (T). (3) 

Keeping in mind that the compression in the heating zone is small, and that the specific internal ener­
gy depends only weakly on density, we may take E ( T) at normal air density in this equation. 

The temperature profile in the diffusion approximation is determined by the formula 

*At T < 30,000°: Imin = I0 ..., 13 ev, At T ..., 50,000°: Imin = I1 ..., 30 ev, 
At T ..., 100,000°: Imin = I2 ..., 50 ev, At T ..., 150,000°: Imin = I3 ,...., 75 ev. 
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s(T) = s(T_)exp (- V3") 't:>O, (4) 

similar to Eq. ( 15) in I. 
The greatest heating temperature T _ in front of the shock discontinuity is found from the equation 

crT~ = Dp0s (T _), (5) 

in which it is necessary to substitute the actual function D ( T 1 ) for air. Values of T _ as a function 
of T 1 , the temperature behind the front, were calculated with this formula and are given in Table III. 

We used Selivanov's 10 data with regard to the calculation of thermody-
TABLE III namic functions and the shock adiabatic of air, taking account of ion-

1 

ization. * It is clear from the table that the temperature behind the front 
10-•r: I n (::c)j•(T -l(~l:c) 10-sr::_ at which the quantities T- and T 1 are comparable, and which is the 

characteristic temperature for the problem of the structure of a shock 
wave front, is of the order Tk~ 285,000° in air. 285 88.1 

275 86,2 
250 81.6 
1;)0 5(1.5 
100 40.6 
75 32.1 
GS 28.5 
50 23.3 

stronger waves. 

1020 
910 
635 
122 
32.7 
13.1 
8.4 
3.7 

285 
240 
175 

60 
25 
12 
9 
4 

We will now estimate the mean over the spectrum of K, the absorption 
coefficient of light in the heating zone. 

Our problem is the calculation of the effective temperature of the 
wave front. It will be shown in the next section that at a temperature T 1 

< 90,000° behind the front, the effective temperature is practically equal 
to the temperature behind the front; therefore, we will consider only 

It follows from Sec. 1 that the absorption coefficient for the various frequencies at the various 
temperatures lies, as a rule, between 100 and 10 em- 1 • The exceptions consist only of sufficiently low 
frequencies having insignificant energy. 

Consequently, the mean coefficient also has the same order of magnitude. For example, at T 1 = 
100,000° the maximum of the Planck spectrum (as a function of frequency) occurs at hv = 24 ev. Here, 
the greatest heating temperature is T _ = 25,000°. At temperatures less than 25,000°, quanta greater 
than 13 ev are absorbed in the same way as in cold air. Quanta lower than 13 ev carry little energy. 
Thus, 85% of the total spectral energy is included in the interval from 13 to 150 ev. 

Quanta with lower energy are absorbed more strongly. Therefore, as we go away from the surface 
of the discontinuity, the spectrum becomes harder and harder and the mean absorption coefficient de­
creases, varying within the limits from 100 to 10 cm- 1• 

As the temperature behind the front is raised, the picture does not change in general; it only be­
comes more complex because the temperature in the heating zone becomes high, and the "leading" 
frequencies, i.e., the frequencies which carry the principal energy (so to say, "lead" the heating) and to 
which the mean coefficient K corresponds, lie in the region of absorption jumps. The order of K remains 
as previously: K ,..., 100 to 10 cm- 1• 

The picture again becomes clear at sufficiently high temperatures behind the front T 1 > Tk ( "isother­
mal jump") or in the case of a thermal wave. 

In both cases there is a region in the wave in which radiation is in local equilibrium with matter. The 
temperature separating the equilibrium and nonequilibrium regions is Tk~285,000°. 

We shall consider in detail the case of very strong waves, because it is a limiting case with respect 
to the effective temperature. 

At temperatures above ~285,000° the radiation is in equilibrium with matter; therefore, we may ap­
proximately consider that a Planck spectrum of temperature Tk leaves the surface where T = Tk, no 
matter how high the temperature is behind this surface. As we go away from the point at which T = Tk 
in the direction of lower temperatures, the radiation density exceeds equilibrium at the given tempera­
ture to a greater and greater extent. Using Eqs. ( 12 ), ( 16 ), and ( 32) of I, and the proportionality E we 
,..., T1•4, we obtain 

U (T) I U 1 (T) = U 1(T k) s (T) I U r (T) e: (T k) = (T kiT)2•6• (6) 

The general tendency of absorption is such that K decreases with increasing frequency. At T = 
285,000° the Planck maximum corresponds to hv = 70 ev, and the principal energy of the primary spec-

*Let us note that in the temperature interval from 10,000° to 300,000°, E ( T) may be approximated by 
the power law E ,..., T 1•4• 
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trum lies in a region in which K decreases more or less monotonically with v. In order to estimate the 
"leading" frequency vm at each point of the wave, we may schematize the spectrum as follows: we will 
assume that frequencies v < vm which are absorbed more strongly than Vm are in local equilibrium, and 
that frequencies v > Vm are distributed in the same way as in the initial spectrum, i.e., arrive at the 
point x without having undergone absorption along the way from the point at which T = Tk. This be­
comes all the more valid as with increasing x the leading role moves to higher frequencies, so that for 
a given frequency v, the ratio v/vm ( x) increases with decreasing x. 

At not too high temperatures, according to Eq. ( 6 ), the equilibrium part of the spectrum carries 
negligible energy. Therefore, we may set 

The "leading" frequency is determined by the formula 
00 

U I E (T) 
(x) = J U vr (Th) d'l = U r (T~t) 8 (Tk) . 

vm 

Some calculated values of Vm ( T) are given in the second column of Table IV. They lie in the suf­
ficiently far Wien region where the spectrum drops rapidly; therefore, the average absorption coef­
ficient corresponds simply to Vm. 

(7) 

(8) 

Keeping in mind that at temperatures lower than =30,000° energetic quanta are absorbed in the same 
way as in cold air, we may use the data of Table I to associate a mean absorption coefficient with each 
temperature at the lower boundary of the wave (third column of Table IV). 

3. THE EFFECTIVE TEMPERATURE OF A STRONG 
SHOCK WAVE AND OF THERMAL WAVES 

According to the general formula ( 26) in I, the flux of visible light passing from the shock wave front 
to infinity is 

"• 
S, = T ~ Uvr £2("=v-'t:~)d<, 

-co (9) 

where Tv is the total optical thickness of the heated layer for the frequency v, corresponding to x = 
+ oo, In distinction from the mean optical thickness T, equal to+ oo at x = + oo , Tv for visible light is fi­
nite, thanks to the condition S = 0, because the absorption coefficient for visible light drops extremely 
rapidly with decreasing temperature. Since the mean coefficient K depends only weakly on temperature, 
the temperature T* at which 

Xv (T*) = X (T*), (10) 

may be called the boundary of transparency of air in the shock wave front in the sense that for T < T*, 
air is practically transparent to visible light. A simple calculation shows that the optical thickness of 
the heated layer from x = + oo to the point x = x* at which T = T* (when T _ ::::: T*) is very small; .6-Tvmax 
=0.1. Therefore, the total optical thickness Tv is practically equal to the optical thickness of the layer 
0 < x < x*. When T _ < T*, the optical thickness of the entire heated layer .6-Tv << .6-Tvmax· 

It is clear from Table II that T*=20,000-17,000° when K,...., 100 to 10 cm-1 • When the temperature 
behind the shock wave front is lower than Tf =90,000°, the maximum heating temperature T _ < T* as 
follows from Table III, and the heated layer is transparent to visible radiation. Since under these con­
ditions black body radiation near the temperature T 1 leaves the surface of the discontinuity, the effec­
tive temperature T eff of the visible radiation will almost coincide with T 1 , the temperature behind the 
front. 

As the shock wave amplitude is raised, for T 1 > Tf , the greatest temperature T- in front of the dis­
continuity becomes higher than the transparency temperature, and an absorbing layer 0 < x < x* with 
temperatures T _ > T > T* appears in the heating zone, which strongly screens the visible radiation leav­
ing the surface of the discontinuity. 

Let Bv ( T) denote the flux of Planck radiation of frequency v leaving the surface of a black body at 
the temperature T: 
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Bv(T) = (2'i1.hj c2) (ehv/kT- !fl. (11) 

Than the effective temperature is determined by the expression* 

~v 

Bv (Tett) = 2 ~ Bv (T) £2 ('tv-<) d't~. 
-00 (12) 

We will separate the integral into two parts. The first of them, from- oo to 0, corresponds to the part 
of the flux going toward infinity which came from the surface of the discontinuity and was partially 
screened by the heated layer. The second part, from 0 to Tv, corresponds to the visible light generated 
in the heated layer itself. Using the well known properties of integral exponents, and also the fact that 
the temperature behind the discontinuity is very close to T 1 , we find that the first part is approximately 

0 

2 ~ Bv (T) £2 ('tv-<) d< = Bv (Tl) · 2£3 (n;v)• 
-00 (13) 

To calculate the seeond integral over the heating zone we note that the radiating capacity which is 
proportional to the Planck function Bv ( T}, does not depend very strongly on the coordinate, while the 
screening factor E2 decreases rapidly as its argument increases. As we advance through the heating 
zone in the direction of increasing temperature, beginning at the point x*, the absorption coefficient of 
visible light increases rapidly, but the mean over the spectrum changes only slightly. Therefore, the 
radiating layer, i.e., the layer which is the principal contributor to the integral and has a thickness with 
respect to Tv of the order of several units, has a comparatively small optical thickness averaged over 
the spectrum. 

Consequently, the temperature therein varies only slightly [see Eq. ( 4)], and we may simply set T 
zconst = T* in the integral. Then 

~v 

2 ~ Bv (T) £2 ('tv- n;~) d't: = Bv (T') [I- 2£3 ('tv)]; ( 14) 
0 

( 15} 

A rough estimate of the total optical thickness of the heating zone for visible radiation may be ob­
tained by assuming that the absorption coefficient Kv depends on temperature through Boltzmann's law 
Kv ,..., exp (-1/kT} , but that K does not generally depend on temeperature. Taking Eq. ( 10} into account 
and changing from x to a new independent variable, the temperature in the integral for Tv, we find 
using Eq. ( 4} and the proportionality E ,..., T 1 •4, 

Now, using Eq. ( 15), it is easy to see how the effective temperature varies as the amplitude of the 
wave increases. For T 1 < T'f~90,000°, Tv ~o and 2E 3 (Tv) = 1, i.e., Teff = T 1 • When T 1 > T'f, Tv in­
creases very rapidly w:i.th increasing T 1 and the first term in Eq. ( 15) tends rapidly toward zero be­
cause of the screening, in spi ~e of the increase of the flux Bv ( T 1 ) • Even at T 1 ~ 110,000° , T _ = 30,000° : 
Tv = 2.2 and the first term is less than the second. Since under these circumstances the coefficient is 
practically equal to unity for Bv ( T*}, the effective temperature simply coincides with the transparancy 
temperature T*. Continuing, T eff =T* as the shock wave amplitude increases without limit, as well as 
in the case of a thermal wave. Since the mean absorption coefficient decreases somewhat as the wave 
amplitude increases, T*drops slightly from=20,000° to~17,000°. 

In the limit of a sufficiently strong wave, K ~ 10 cm-1 according to Table IV, and the effective tern-

*Its meaning becomes clear when we remember that 

00 

2 ~ £ 2 (z) dz = 1. 
0 
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TABLE IV 

~ 

h vm(ev) 6 
2 

" 
140 
21)0 10.5 
212 9.8 
225 8.6 

!/J(J(}{/ 

""'7ooo• 

-,goooo• 'r 
FIG. 2 

perature, equal to the transparency tempera­
ture, is= 17,000°. It should be noted that in 
spite of our extremely poor knowledge regard­
ing the absolute magnitudes of Kv ( T) and K, the 
above value of the effective temperature is fair­
ly accurate because of the sharp dependence of 
Kv on temperature. 

A curve of Teff ( T 1 ) is given in Fig. ( 2 ). 
I wish to express profound thanks to Ia. B. 

Zel'dovich for his interest in this work, and 
for valuable discussions and remarks. 

APPENDIX 

THE ROLE OF ELECTRONIC HEAT CONDUCTIVITY IN THE ESTABLISHMENT 
OF THE TEMPERATURE PROFILE IN THE HEATING ZONE 

At high temperatures, air is strongly ionized, and we should estimate whether the flux of electronic 
thermal conductivity is comparable to the energy flux transferred by radiation, which generally speak­
ing may lead to some spreading of the temperature profile in the shock wave as compared with the pro­
file accounting for radiant heat exchange alone. 

Electrons in a plasma undergo elastic collisions with electrons, ions and neutral atoms. Sufficiently 
energetic electrons may excite and ionize atoms (and ions). The mean free path for elastic Coulomb 
scattering of electrons in a plasma may be estimated by Landau's formula, 11 which for air may be 
written in the form 

2·10-'(T0 2 
le ~ z (T) fO<) em, ( 17) 

where Z ( T) is the mean number of free electrons per atom. The coefficient of electronic thermal con­
duction is then 

4,5 ( T 0 \'/,em 2 

X, = z (T) Toi) ~;-~· (18) 

where R.e is essentially the distance required to establish a Maxwellian distribution in the electron gas. 
It is very small: at T = 1050 , R.e = 10-5 em. 

The elastic mean free path of very fast electrons, which are formed as a result of photoelectric ab­
sorption of energetic quanta, may be estimated by Eq. ( 17), if we replace the temperature therein by the 
electron energy. Thus, forE "' 100 ev, we obtain£"' 2 x 10-3 em. 

However, such energetic electrons quickly lose energy by ionization and excitation of atoms (the 
cross section is"' 10- 16 to 10-17 cm2, the free path is R.inelas. "'2 x 10-4 to 2 x 10-3 em). The inelastic 
free path is comparable with the elastic free path atE "' 70 ev. 

At low temperatures, where ionization is small, the electrons do not have the ability to ionize ( E > 13 
ev), and lose energy through elastic collisions with atoms; a"' 10-16 cm2, £"' 2 x 10-4 em. In order to 
become thermalized, they must undergo N "' 3 x 104 collisions, i.e., the thermalization length is "'.J £2N 
"'4 x 10-2 em. All of these free paths are less than the free path for the absorption of radiation, which, 
as was shown in Sees. 1 and 2, is of the order of 10-2 to 10-1 em. Therefore, we may assume that the 
energy of absorbed quanta is transformed into heat at the point of absorption. This energy is transmitted 
directly to electrons, which then exchange it with ions considerably more slowly than the time required 
to establish Maxwellian distributions in the ion and electron gases. The exchange time may be estimated 
by Landau's formula. 11 The characteristic exchange length (the time multiplied by the velocity of the 
front) is 

I ~ 10-a ( 10-4 r· )'/, em 
exch e • 

In the heating zone, the difference between the electronic and the ionic temperatures is not great. 
It is easy to estimate the flux of electronic thermal conductivity assuming approximately that the 

electronic and ionic temperatures coincide, 
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Se = - Xep.0dsjdx. 

Let us compare this ·with the flux of radiant energy, Eq. ( 3), using Eq. ( 4) to obtain the gradient of the 
internal energy. We obtain 

s. I Srad = (le( lrad) ve( D, 

where Ve is the thermal velocity of the electrons. 
Calculation shows that the fluxes are comparable only at very high temperatures "'300,000°. At lower 

temperatures: Se << Srad. 
The difference between the electronic and the ionic temperature has an essential effect only on the 

structure of the temperature peak behind the discontinuity, but this in no way influences the behavior of 
the effective temperature of the wave. 
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On the basis of the theory proposed by Landau for a Fermi liquid the attenuation and dis­
persion of sound oscillations in such a liquid are investigated. Specific calculations are per­
formed for the case of liquid He3• 

THE characteristics of sound in a Fermi liquid are determined by the kinetic equation for the excita­
tions, which, according to Landau, 1 has the form 

(1) 


