
SOVIET PHYSICS JETP VOLUME 6, NUMBER 1 JANUARY, 1958 

ON THE THEORY OF THE SHUBNIKOV-DE HAAS EFFECT 

I. M. LIFSHITZ and L. M. KOSEVICH 

Physico-Technical Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor November 22, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 88-100 (July, 1957) 

Quantum oscillations of the electrical conductivity a a{3 and specific resistance paf3 tensors 
are investigated on the basis of some general formulae presented in Ref. 1. It is shown that 
the oscillations of aaf3 and paf3 may be expressed in terms of the magnetic moment oscil
lations in the de Haas-van Alphen effect and in terms of the classical values of the mobility 
tensor. The asymptotic values of the oscillation amplitudes in strong magnetic fields are 
investigated and some simple cases are considered for which calculation of the oscillation 
amplitudes may be completely carried out. 

IN Ref. 1 I. M. Lifshitz developed a consistent quantum theory of the conductivity of metals in mag
netic fields. The relation between the quantum kinetic equation and its classical analog derived there 
permits one to determine quantum corrections to the classical value of the electrical conductivity, and, 
in particular, to determine those corrections which account for the quantum oscillations of the conduc
tivity. The present communication .,is devoted to a detailed study of these oscillations (Shubnikov-
de Haas effect2). 

It was shown in Ref. 1, that the simple (classical) part of the electrical conductivity tensor can be 
written in the form 

a~~=-2~~~0 X"'~m'dsdpz (ex, ~=fz, z), ~zz - 2 \\' ato (xzz + xzz) m'de dp 
cl - - )) ae 0 z' (A) 

where X ( E, Pz) is constructed in a specific way from Green's function for the classical kinetic equation 
[see Eq. (59) in Ref. 1], and f 0(E) is the Fermi distribution function. 

Quantum oscillations of the conductivity tensor occur when x (E, Pz) has the values determined by the 
following equations: 1 

00 

~a"'~=~ l'k~ (ex, ~ =F z, z), A zz ""' (/zz Lzz) l..l.O = £.J k - k > 

h-1 k-1 (B) 

where w*= ( e H /m*c), m* = ( 1/27!') (aS I ClE), and S = S (E, pz) is the area of intersection of the con
stant-energy surface for the electron having an arbitrary dispersion law € = E (p) with the plane Pz = 
const., perpendicular to the magnetic field. 

The structure entering into the integrals in Eq. (B) permits one to determine easily from them the 
oscillatory factor in which we are interested and to determine in this way the oscillation of D. a0lf3 from 
the oscillation of the magnetic moment and of the magnitude of the classical conductivity tensor. 

1. CONDUCTIVITY OSCILLATIONS 

Let us determine the oscillatory part of the expressions Ik and Lk in (B). To do this we shall use 
the concepts introduced in Ref. 3, and the same method, slightly modified and simplified. 

First let us consider the contribution to the oscillatory part of the electrical conductivity of a single 
group of electrons with a given dispersion law. 

In the integrals of Ik and Lk , let us transform from the variables n , pz to n, € changing the order 
and the limits of integration, and also using the relation 
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• D (n, Pz) ( an )-1 
'liw = -a- , D (n, E) Pz 0 

which results from the quasi -classical expression for the energy levels of an electron in a magnetic 
field: 

S(s,pz)=(n+r)ehHjc (O<r<I), n-pl. 

This gives for Ik 

( { ntax a (x*m) I an ,-1 } h = 2 ~ fo (s) ~ .) ~ apz e e2rtikndn ds, (1) 
nmin 

where the summation sign refers to summation over uniform intervals of change of n ( E, Pz ) for a fixed 
value of E. 

The idea of the calculations which follow is based on the observation, that, with the exception of fo(E) 

and e27riKn, all the quantities entering the integrals for Ik and Lk change very slowly as functions of E 
and n (in comparison with the range of variation of E and n). Therefore, by virtue of the condition 
n ~ 1 the basic contribution to the internal integral ( 1) is made by integrating in the vicinity of the ex
treme points nm (E). Near these points 

n- nm = 1/2 (Pz- p';)2 (a 2n I ap; )m, 

where n = n ( E, Pz) and nm = n ( E, p~) and consequently 

I an;apz I= V2 (a2n/ ap; )m (n -nm)· 

This last relation permits one to determine the contribution to the inner integral of ( 1) very simply 
by evaluating the integral in the vicinity of the extreme points: 

where 

nm nm 

\ a (xm*) I~ ,-1 e2"ikn dn = 12 ~ \-'!, I a (xm*) e21tikn dn 
) aE apz ap; m ) aE v In- nm 1 

0 

~wm(s)e2"iknm ~ e2"ikx JxJ-''• dx=wm(s)e2"iknme±i"f4/V2k, 
+co 

( ) - a (xm*) 12 a•n 1-'iz Wm E - a 2 
E apz m 

Pz=Pz 

The plus sign in the expression e ±i 1T 14 refers to nmin• while the minus sign refers to nmax. The 

term corresponding to nmin = 0 does not contribute to the oscillatory part of Ik and may be omitted. 
All the remaining extremal points are repeated twice (for adjacent uniform intervals of change of 
n ( E, Pz) for a fixed value of E) , so that we may transform ( 1) into the ·form: 

(2) 

m 

where the summation is made over all extremal points. In what follows we shall omit the summation 
sign for summing over extremal points. 

Considering the behavior of fo (E) in the vicinity E= ~and assuming that (onm/oE)E= ~ f:. 0, we find 

from (2) co 

h ~ 2 v~} Wm (C) exp { 2TCiknm (C)± i ~ } \ fo (s) exp { 2dk d;2 (s- C)} ds = ~·~ (d:: ;~~) s:~A 
0 

X exp { 2rriknm (() - i ; ± i ~ } , (3) 

where A = 2~9 I 1i w*, and ~ is the chemical potential. 
Thus, the oscillatory part of aaf3 (a, {3 f:. z, z) is given by the expression 

~:."~ = ~ ¥2 w':,P (~) (shk~A) exp { 2TCiknm (C) - i ( ; + -i-)'-1 -k-l nk'f• (dnm I d~) (4) 
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Equation ( 4) for b.a<Xf3 can be rewritten in a much more compact form, if we introduce the quantity 

F k =2 ~~ f 0 e2"'ikn 2nm' dz dpz. (5) 

It can be easily shown by calculation, analogous to that performed above, that integration in the vicin
ity of the extremal points (excluding the trivial case nmin = 0) makes the following contribution to Fk: 

Fk = Ak(qexP{27tiknm (q-i(; +::)}• 
2m • (l;, p';)(k"A Ish k"A) (ehH )'/2 m' (l;, p';) (k"A Ish k"A) 

Ak (() = k''• (dnm I d~) I a•n I ap; !:!:. ~ = 2 kG (dSm I dl;) I a•s (~. Pz) I ap; I;;,· 
(6) 

From this last equation we can see the relation between the quantum numbers n (€, Pz ), and the area 
S (€, Pz ). As has been shown, all the quantities, which enter into Eqs. ( 4) and ( 6 ), are to be evaluated 
at the points € = ~ and Pz = p~ which correspond to extremal areas of cross sections of the boundary 
Fermi surface. (This problem is examined in greater detail in Ref. 3 and integrals similar to Ik and 
Fk are evaluated there.) 

From Eqs. ( 3) and ( 4 ), it can be seen that 

(7) 

Finally, E q. ( 4 ) can be written thus: 

(8) 

Note, that the oscillatory part of the magnetic moment of the electron gas in the de Haas-van Alphen 
effect can also be written in terms of the quantity F: 

z -3 ""'(' \ ~ 2rtikn • 5m (~) F 
~M = - h LJ ~ .\ f o aH e 27tm dr:.pz = - h"H (dS 1 dl;) • 

1 k m 

Hence, we find that 

(9) 

Substitution of (9) into (8 ), permits one to express the oscillatory part of f:ia0lf3 in terms of the os
cillatory part of the magnetic moment b..Mz, thus; 

(10) 

Let us introduce the "classical mobility tensor" q0lf3, which is related to the classical conductivity 
tensor in the following manner: 

(11) 

where No is the number of electrons in the conduction band, and q is the mean value of the mobility, 
weighted by f 0• 

Since, on the other hand, the classical Eq. (A) can be transformed into 

Cl~~ =2~~ fo(:E X"~m')dzdpz (oc, ~=f=z, z), 

one obtains the following expression for q0lf3: 
h3 a 

q"r; = Z1tm' ae (x"'~m') (oc, ~ =f= z, z). (12) 

Substituting ( 12) into ( 10 ), one finds the following expression for the oscillatory part of b. a Ol{3 (for 
a, {3 -:f:. z, z) in terms of the independent variables H, ~: 

(13) 

If there are several groups of electrons which determine the electrical conductivity of the metal, i.e., 
if there are several overlapping, partially filled energy bands, then every group of electrons makes its 
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own contribution to i:l. 11a{3, so that i:l. aaf3 assumes the form of a summation of terms like Eq. ( 13). 
In a similar way one finds the expression for the oscillatory part of i:l. a zz. Integrating I{z in the way 

described above one finds 

u,z = /k ( x~z m· i a2n I ap; 1-'/z}~. P': ( s:~,_) exp { 2niknm (q + i (r: ± -i--)}' 
which can be written in terms of Fk: 

(14) 

Because of the additional coefficient of a nm I a~, the integral L~z [Eq. ( 14)] is considerably great
er than Jkz (in the ratio ~1~-t*H where ~-t*H = 1i w*). Therefore, the fundamental contribution to i:l. azz 

from those extremal sections, (of the boundary Fermi surface) on which xK'z does not vanish, is made by 
such terms, namely: 

zz . zz r dnm "' ~:; = tzom (-,) ~ LJkFk. 
k 

Using the relation between F and f:l.MZ, it is easy to show for this case to this degree of approxima
tion 

(15) 

If x ~z vanishes on the extremal cross-section (of the boundary Fermi surface) [in particular, as is 
evident from the form of the general Eq. (59) of Ref. 1 for x ~z, and from symmetry considerations, 
x ~z vanishes on central cross-sections of the Fermi surface], one must take account in the integrals 

nm 

Qk (s) = ~ x~z~m•J :;z rl e2rtikn dn 

of the subsequent (non--vanishing) terms of the expansion of x ~z in powers of (pz - p:r). 
Assume that near the extremal points 

zz ( m) 1 a• zz 
Xo = Pz- Pz s -5 ,---.-. Xo · (16) . dpz 

Then 

where as before the plus sign goes with nmin and the minus sign with nmax• 
In evaluating the integral in Eq. ( 17 ), one can make use of the asymptotic equation for integrals of 

this form, which is given in Ref. 3. 

(17) 

Note that if x (€, Pz) is an even function of pz, then from the equality x 0(€, Pz) = x 0(€, -pz) it for
lows that 8x 0/ apz = 0 for Pz = 0, and consequently for central cross-sections, the expansion in Eq. (16) 
commences with a quadratic term. This means that for central cross-sections 

Qk (s) = ~ a2x.~z 1 ~~-·~·exp {2niknm ± i _ ~ ... } • 
8rck 2 ap; ap; 0 

and the basic contribution to the oscillatory part is given by 

~:;ZZ- _!_ {..!- a (x.zzm*) _!_ dSm I d'( a2x.~z } . F 
- 2rc m• a~ + 2 I a2S I ap; I ap; 1;, Pz=O . (18) 

By introducing the component qzz of the "classical conductivity tensor" into this equation by analogy 
with Eq. ( 11 ), viz: 

( h3 ) a h3 a x.zz m .2 ) 

qzz = 2nm* ·ar: (xzz + ;(~Z) m*- m* apz (a~;apz ' (19) 

it is easy to verify that for central cross-sections 
zz _ ha { 1 a (x.zzm *) dSm I d~ a2x~z} 

qm- 2n m• a~ =f 2Ja2Siap;l ap; Pz-; 
and therefore, Eq. ( 18 )1 can be written in the form 
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zz ( dIn Sm) 
(~:;zz)H.~ = -qmH dt; ~Mz. 

71 

(20) 

If the boundary Fermi surface is convex, there is a unique extremal cross-section, i.e., the central 
one, and consequently the oscillatory part of the electrical conductivity of the given group of electrons 
is determined from Eqs. ( 13) and (20). Thus all the components of ~aaf3have one single order of 
magnitude of oscillation. If there are other extremal cross-sections in addition to a central cross
section, ~azzis determined from Eq. ( 15), and the amplitude of oscillation of ~azz will be con
siderably greater than the amplitude of oscillation of ~aaf3 (a,{3 -:j:. z,z) for these groups of electrons. 

Eqs. ( 13 ), ( 15) and ( 20) for the oscillatory part of ~aaf3 derived above are given in terms of the 
independent variables ~ and H. It was shown in Ref. 1 that for a concrete application of these equa
tions and for comparison with experiment it is necessary to examine the oscillation of the chemical 
potential ~=~(H), resulting from the constancy of the number of electrons in all bands: 

2h-3 ~2}~j027rmf dpz~Zn ~Ni=N=const 
I n I 

(summation over j is extended over all bands). 
In this case, in contrast to the de Haas-van Alphen effect, in which they can be neglected, these 

oscillations play a fundamental role, because of the larger magnitude of aaf3. 
If we symbolize by No(~) the classical relation between the electron concentration and the chemical 

potential, namely 

JVO (:) = 2h-3 2} ~~ / 02-.:mj dpzds = 2h-3 ~ ~ / 0 (d p), 
I I 

we have, using Poisson's equation and considering Eq. (5), 

00 

N (C)= JVO (:) + h-3 2} 2} Fi. = JVO (q + h-3 l}Fi (C). 
i k~I I 

Next, putting ~ = ~0 + A~, where ~0 is the chemical potential for H = 0, we can write 

and then it follows from Eq. ( 21) that 

No(() =No (:o) + L; (8N~;a:) ~c. 
j 

~Ch3 L; (8N~j8() = - L; F 1 (Co)· 
j j 

Taking into consideration that the oscillatory pertubation on aaf3, as a function of the relation ~ 
= ~(H), has the form 

we can substitute into Eq. ( 23) the expression for ~~ from Eq. ( 22 ): 

~cr~B =- (f)o~Bj8C0) ~F1((0) j h3 ~ (fJN~/8~0). 
I I 

If we now use ( 9), the Aa1af3 are expressed in terms of: 

o:B - ocr"'B '\.l dIn smj A Mz I 'l,;l oN2 
~crl - H a" LJ d" '-' I LJ a~ . 

so 1 so k o 

Finally in Eq. ( 24), one can express aaf3 in terms of the mean value of the "classical mobility 
tensor", 

(21) 

(22) 

(23) 

(24) 

(25) 

The experimentally observed oscillations of the conductivity as a function of the magnetic field-are 
described by the sum ~aaf3 + ~1 aaf3 so that in Eqs. ( 13 ), ( 15 ), and ( 20) (or in equations corresponding 
to them) one should substitute ~ = ~0 • 
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For a, {3 :f:. z,z this sum becomes 

(26) 

If all the Fermi surfaces are convex, then ~azz + ~a1zz are determined by the analogous expression: 

~ [ ~ a - I ~aN% ] d Ins . L~azz + ~afz = H f f a~o (N~qf,z) .LJ 8fc;- q;:j (~o) d~o m) ~Mj . (27) 

If there are Fermi surfaces with non-central extremal cross-sections, then 

~aZZ +~a"'= !!:!... H2 ,., x_ZZ (r ) (dIn smi)2 at>Mf 
1 21t ~ omi ' 0 d~0 aH ' 

t ' 
(28) 

where the summation extends over all Fermi surfaces with non-central cross-sections. 
From the formulae for the oscillatory part of the conductivity ~aaf3 [in what follows ~aaf3 will be 

used to symbolize all the terms of aaf3 which oscillate as the magnetic field changes, i.e., sums of the 
form of Eqs. ( 26) and ( 27 )] it is evident that each group of electrons makes its own contribution to 
~aaf3. It turns out, that the contribution of each band is related to ~Mz only for similar groups of 
electrons. Therefore, the period of oscillation of ~aaf3 is always determined by the same coefficient as 
the period of oscillation of ~Mz, and, of course, it coincides with that of the de Haas-van Alphen effect. 3 

~ (1/H) = eh/cSm (:0). 

Principal emphasis in what follows will be on the amplitude of the oscillations of ~aaf3. First, in 
contrast to the oscillations of ~Mz, the amplitude of the summands in ~aaf3 corresponding to given 
"anomalously narrow" bands are determined by all the "normal" groups of electrons. Secondly, the 
undetermined quantities X (E, Pz) enter into a calculation of the amplitude. These quantities are also 
involved in the classical expression for the conductivity. 

In certain concrete cases, which are introduced in Sec. 4, the quantities x ( E, Pz) can be obtained from 
the solution of the corresponding kinetic equations, and the magnitudes of the oscillations can be calcu
lated exactly. 

2. ASYMPTOTIC VALUES OF THE CONDUCTIVITY OSCILLATIONS IN STRONG 
MAGNETIC FIELDS 

Let us now examine the behavior of the amplitude of oscillation of ~aaf3 in strong magnetic fields, 
I 

when 'Yo<< 1, where, in accordance with Ref. 4, we denote by 'Yo the relation 'Yo= 1/(EHt0/m0c) where ·m0 
and to are the characteristic mass and relaxation time, respectively. In this case we can make an 
asymptotic expansion of the amplitude in powers of 'Yo making use of the asymptotic value of a0af3/ = a~L 
obtained in Refs. 1 and 4. If the boundary Fermi surface is split into several closed surfaces, the 
asymptotes, a0af3, have the form 

( 
~~an 

a~~ (H) = 1oa21 + ~~a~1 
' 1oa31 

1oa1a) 
1oa2a · 

a a a 

(29) 

Here aa{3 (~0) is a matrix whose elements can be expanded in powers of Yo beginning with a zero order 
term, such that 

1oa12 = ~ (~N~- ~N~), 
k i 

where N+ is the electron density, and N- is the hole density for corresponding groups. __ 
Since for every group of electrons aaf3 = N~a{3 the asymptotic expansion of the elements of qaf3 

begins with terms of the same order in y0, as a0a{3, namely 

( 

2-
joUu 

~ = - ec/H + '[~U21 
joU31 

ecjH + ~~u12 

(30) 

(31) 
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The expansion of the elements of the matrix Ua{J in powers of y 0 begins, generally speaking, with a 
zero order term (in some cases, the expansion of aa{J is the same as Ua(J, cf. Ref. 4). All the elements 
of uafJ depend on the form of the collision integral, and generally speaking, they turn out to be functions 
of ~0• 

Since qgf is generally of the same order of magnitude as qafJ, the asymptotes of qg_fJ, in strong mag
netic fields, should have the form of Eq. ( 31). In this case it is interesting to examine the possibility of 
an exact calculation of the first term in the asymptotic expansion of cGr as follows. 

For perpendicular magnetic field H (applied along the axis OZ) and electric field E (along the axis 
OY) the electron finds itself in a steady state with a constant velocity (depending on its state) whose 
mean value differs from zero. This velocity is directed along the axis OX and it is given by cE/H.* 
Note that the indicated velocity does not depend on the dispersion law for the electrons nor on the state 
of the electrons, i.e., it does not change because of collisions experienced by the electron. The steady 
state mobility of the electron q'{f = ec/H is related to this velocity. 

In strong magnetic fields when the mean time between collisions of the electrons is much greater 
than the time required for one revolution of the electron around its classical orbit, q~ makes the prin
cipal contribution to the elements qxy of the mobility tensor, and consequently 

q:z = ecjH + ~~u~,~~ (32) 

where y~u£. is the mobility, which is a function of the collision integrals. Thus it is seen by equating 

( 32) and ( 31), that the first terms in the expansion of qxy and q~ in powers of Yo are identical. 
From Eqs. (26) and (27), and also from Eqs. (31) and (32), it follows that the amplitudes of all the 

elements of aaafJ, with the exception of tlaxy, have the same order of magnitude in terms of y0, as do 
the corresponding elements of a0afJ. As for tlaxy, its ratio to Yo has a higher order of magnitude than 
that of afY, if ~N~ f:. ~N( . One can write for the relative magnitude of the oscillations in the case of 

k 1 + 
convex Fermi surfaces and for ~Nk f:. ~Nf 

k i 

] dinS 
Ll:J"~/:1"~ = H '¥"~ __ m AM~ 

0 I dY Jl 

where 

and the matrix 'l/Ja{J 

I so 

t¥22 
t\>a2 

'h3) 
q;23 ' 
~33 

(33) 

(34) 

and, consequently, the expansion of the terms of the 'l/Ja{J matrix begins, generally speaking, with a zero 
order term in Yo· 

It is characteristic that the relative order of magnitude of the oscillations of axy (in terms of y 0) is 
less than the relative magnitude of oscillation of the remaining elements of the tensor aafJ. t There is 
a simple physical reason for this conclusion, namely that the asymptotic value a0xy in strong fields for 

*It is easier to verify that this is so by noting that in a steady state the mean value of the Lorentz 
force acting on the electron is zero. Since the expression for the Lorentz force does not depend on the 
form of the dispersion law, the steady-state velocity acquired by the electron in crossed magnetic and 
electric fields is independent of the dispersion law. 

hn some concrete cases, in particular for an isotropic dispersion law, the expansion of wxy can 
begin with a term of the order Yo (for ~N~ f:. ~Nf ) 

k i 
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~N+k :/:. ~Nf in Eq. ( 30) has a fixed value for a given metal, and it does not experience any quantum 
k i 
oscillations. 

If ~Nk+ = ~N[ the expansion of afi begins withy~ and therefore the expansion of wxy begins with a 
k i 

a zero order term w~' = 'lj;'l,. where 

, _ a In a~2 I "" aN~ 12 I , 
<Ji12 - ----ar .LJ ~ - Um G12· 

0 k 0 

The expansion of the remaining elements in wetf3 results as before in equations of the form of Eq. 
( 34 ). 

3. OSCILLATIONS OF THE RESISTIVITY 

In experiments one usually measures not the electrical conductivity tensor oetf3 but rather the spe
cific resistivity tensor petf3 =a~~. Consequently it is necessary to determine the oscillatory part of 
pet/3, 

The relation between the elements of the tensor pet/3 and those of aetf3 is defined by the well known 
expression 

(35) 

where Da{3 are the algebraic complement of the elements of aetf3 in the determinant II a 11. 
Let us write aetf3 = a0af3 + D.aetf3 designating by D.aetf3 the oscillatory part of aetf3, which, as is known, 

represents a small quantum perturbation to aaf3. Then, leaving only linear terms in D.aetf3, it can be 
easily shown. 

II ~ I! = II :Jo II + D~~~:J~~ = II cr0 II (I + p~~Li::;~~) (36} 

(we omit the sign for summation over indices which are to be taken in pairs from 1 to 3}. 
Similarly we find to the same degree of approximation 

(37} 

where Eikl is an antisymmetric unit tensor of the third rank. 
By using Eqs. (36} and (37), there follows from Eq. (35} 

(38} 

where 

II Po II = det I p~~ I = II :Jo II - 1• 

It is evident from Eq. ( 38}, that the equation for the oscillatory part of the electrical resistivity ten
sor in the general case has an exceedingly cumbersome form. The expression for D.petf:J retains the 
classical value and the oscillatory parts, generally speaking, of all the components of aetf3. Even in the 
simplest cases D.petf3 retains some terms, which can have a single order of magnitude of amplitude and 
various periods of oscillation. Simplification of Eq. ( 38} occurs only for certain special cases. 

In particular, if there are boundary Fermi surfaces with non central cross-sections (it is obvious 
that these always occur in even numbers, so that the cross-section which are placed symmetrically 
around Pz = 0 make equal contributions to the oscillation D.aetf3), on which x~z =f:. 0, then, in magnetic 
fields that satisfy the relation 'Yo ,..., 1, one need retain in Eq. ( 38) only those terms which contain D.azz. 

The components of t.~pet/3 in this case have the form 

~pxx = ( II Po II cr~Y- p~xpgz) ~:Jzz,~p.VY= ( II Po II ::;~X- rtYp~Z) ,:l::;zz, 

~pXY =- ( II Po II :J~Y + r;Ypgz) Ll::;ZZ, ~paZ= - p~zpgz~:;ZZ (a.= X, y, z), 

where t.wzz is determined by Eq. ( 28 ). 
If the Fermi surfaces are all convex, one can calculate the asymptotic values of D.petf3 in strong mag

netic fields (y0 << 1). To do this, just as was done in Sec. 2, one uses the asymptotes of the tensors a0etf3 
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[Eq. ( 29)] and paf3 (Ref. 4), which allow one to express the relative value of the oscillations of the spe
cific resistance tensor in the following way: 

~ dinS . 
6-p"~/0°~ - H <I>~~ __ m_J 6-M~ 

I 0 - J d~ J• 
j 0 

If ~Nk+ -:1 ~Nf , the matrix q, a{J has the form: 
k i 

(
'f'n To'!'12 

<I>~~= io'f'21 <f'22 
'!'31 '!'32 

'!'13) 
'?13 • 

'!'33 

Expansion of the elements of the cf>a{J matrix in powers of 'Yo begins with zero order terms. 
It can be shown, just as in the oscillations of the conductivity, that the relative magnitudes of the 

oscillations of the elements, pXJ is smaller by orders of magnitude (in terms of 'Yo) than the relative 
magnitude of the oscillation of the remaining elements in the paf3 tensor. 

(39) 

(40) 

If ~Nk = ~Nf , the expansion of the element q,XJ again begins with a zero order term in y 0, and the 
k i 

expansions of the other terms in the qpf3 matrix have the form shown in Eq. ( 40 ). 

4. CALCULATION OF THE OSCILLATIONS IN SOME CONCRETE CASES. 

In this section we will examine a series of simple cases, which permit simplification of the general 
formulae for the oscillatory parts of the tensors aaf3 and paf3. 

The relations for Llaaf3 are greatly simplified in the presence of a single conduction band with con
vex Fermi surfaces. In fact, in Eqs. ( 26) and ( 27), we retain only one term and find 

{- aq"~ I a InN"} dInS 6-cra~ = H qa~ - q"~(~o) + - -Y- __ m_ 6-Mz. 
m 0~0 o,0 d~o 

(41) 

It is interesting to note that if qaf3 does not depend onE and Pz the sum in Eq. ( 41) vanishes. This 
means, that the oscillations of aaf3 and paf3 for the case of a single conduction band with convex Fermi 
surfaces depend on the functional relation between the mobility and E and Pz· 

To calculate the amplitude of the oscillations of Llaaf3 and Llpaf3, whether there exist one or several 
groups of electrons, it is necessary to know the functions x (E, Pz ), which can be determined only on the 
basis of certain assumptions concerning the collision integrals. 

If the collision integrals in the kinetic equation can be replaced by a "relaxation time" t 0, which 
generally depends onE and Pz• then 

where vk are the Fourier components of the velocity of the electron. 

(42) 

In the isotropic case Eq. ( 42) becomes even simpler. Noting that for any isotropic dispersion law 
E = E (p)the relations p = m*v and v =V'pE*are satisfied we have 

X"2 = O(a = x, y, z), zz 2- e21 0 p; s (e p ) - ~ (p2 (e) p2) X = ~~ -- -- ' ..... ' 2 - j~ ,_, - ' o h" m*2 z 

(43) 

where p = p (E) is an inverse function of E =X ( p ). 
From Eq. ( 43) and from the definition of the mean value of the "classical mobility tensor [Eq. ( 11 )], 

with the assumption that f~ (E) can be approximated by a o-function, it follows that: 

(44) 

*In the isotropic case v = ( 8E I 8p)p/p and from the expression S (E, Pz) = 'IT (p2 (E) - p~) it follows that 
m* = p (ap/&) = p (aE/ap) so that p = m*v. 
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where, as above, w*= eH/m*c. 
Furthermore, from Eqs. ( 12) and ( 19), using Eq. ( 43), we find that 

q~~ (r ) = q"'~ + p2 (~o) aq ~ 
m ' 0 2m* a~o 

We will now apply Eqs. ( 44) and ( 45) to an examination of two models. 

(1) One Conduction Band 

If there is only one eonduction band, when 

a In N°jOCo = 3m*/p2 (~o). 

the oscillating terms of l:l.~/3 have the form 

~cr"'~ = - __!___H aq'~ ~MZ (IX R =I= z z)· ~crZZ = _3_ H aqzz ~Mz 
3 a~o •t' ' ' 3 a~o ' 

where qaf3 is determined from Eq. ( 44 ). __ 

(45) 

(46) 

In strong magnetic fields (y << 1) all the elements of qOl/3 and their derivatives can be readily ex
pressed in terms of q0, and we find* 

(47) 

The expression for the oscillatory parts of the magnetic moment l:l.Mz in the case of an isotropic 
dispersion law can be found from the general equations,3 in which one should substitute 

Sm (:o) = 'i7:P 2 (~o), dSm/d(0 = 2'r7:m*, I o2Sjop; I= 2rr. 

Using c/f/3 = N0q0lf3, and also Eqs. ( 38) and ( 46 ), we can calculate the oscillations of the specific 
resistivity tensor 

2H { * aqxy aqzz} 
f:!.vzz ==- -- 2cu ! 0 -+- ~Mz 

' 3cr~ a~o a~o ' 

where a0 = N0e2t0/m* is the conductivity of the metal in the absence of a magnetic field. 
In strong magnetic fields one can substitute w*to >> 1, which transforms Eq. ( 48) into 

(48) 

(49) 

It should be observed that the relative magnitudes of the oscillations of l:l.crxy /a0XY, and also of 
l:l.pxy / p0xy in strong ma.j~netic fields in our case are smaller by two orders of magnitude of 'Yo than the 
relative magnitudes of the oscillations of the remaining terms in the a0lf3 and paf3 tensors. 

( 2 ) Two B and s with N+ = N-

Let us assume, that there are two groups of electrons having a quadratic dispersion law, for one of 
which (1/21T) dSm1 /d~0 = m 1 >O (electrons), and for the other (1/21T) dSm2/d~0 =- m 2 <O (holes), and 
that N+ = N-. 

Symbolizing by q1 the mobility of the electrons, and by~ that of the holes, it can be easily shown 
from the general Eqs. ( .26) and ( 27) 

*If m* = m = const, then alnq0/a~ = aln t0/a~ 0 and the expression for l:l.axy lafY in Eq. ( 47) coincides 
with that given elsewhere, 5 where, however, there is a misprint in the numerical coefficient. 
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(50) 

for a, {J :/:. z,z and 

H { [ _ _ 2 ( oq~z aqzz ) J [ _ _ 2 oq~z aq~z ) J } 
D.azz =- (1 + fL)~o f' (q~z- q~z) -3 ~0 ~- o~0 D.Mi + f1 (qfz- q2z) + -3- f'~o ( ~-~ D.M; ' (51) 

where J.L = m2/m1 , and the mobilities are determined from Eqs. ( 44) in which one substitutes in the case 
of the electrons m* = m 1 , and for the holes, m* =- m 2• 

For the extreme cases J.L >>1 or J.L <<1, one can leave out some of the terms in Eqs. (50) and (51); 
however, the general character of the expressions does not change. 

Eqs. (50) and (51) show that the assumption N+ =~does not introduce any fundamental simplifi
cation of the general expressions for D.aa/J. 
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The emission and absorption of light at high temperatures in a shock wave front in air are 
considered. The dependence of the brightness of the shock wave front on its amplitude is 
derived. 

IN our preceding article1 * we considered in a general form the problem of the internal structure of the 
front of strong shock waves in gases, taking account of radiation. We operated throughout with integral 
characteristics of the radiation- the total energy flux and density. Also, passing from the geometrical 
coordinate to the optical thickness, we excluded from consideration the actual distribution of quantities 
iri space, which is determined by the coefficient of absorption of light in the gas. This approach is in-

*Hereafter referred to as I. 


