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The equilibrium electron concentration, Hall constant, and electrical resistance of n-Ge type 
semiconductors in a strong magnetic field are considered. The dependence of these quantities 
on the field strength is determined. It is found that the quantities under consideration are an
isotropic, the nature of this anisotropy being determined by the anisotropy of the electron mass 
and by the number and mutual arrangement of the constant-energy ellipsoids. 

IN the past, a number of papers1•2 have appeared in which the electric resistivity in a magnetic field PH 
and the Hall constant R in n-Ge type semiconductors have been considered. It is necessary to take into 
account here the anisotropy of the electron mass the the presence of several constant-energy ellipsoids in 
the Brillouin zone (six for Si and eight for Ge ). However, the analysis was made by the usual kinetic
equation method without taking into account quantization of the electron energy by the field H, a proce
dure valid only for sufficiently small H. 

In this connection, it is of interest to calculate PH and R of n-Ge type semiconductors taking the elec
tron mass anisotropy in strong magnetic fields into account. For this purpose it is necessary to take into 
account the above-mentioned electron energy quantization by the field H. The present paper is devoted 
to this. 

1. CALCULATION OF THE CURRENTS 

Let us assume that the electric field E is directed along the X axis and the magnetic field H perpen
dicular thereto is along the Z axis. To calculate PH and R taking the energy quantization by the field 
H into account, we use the stationary states method~·4 Following this method, let us calculate the components 
of the electric current j in the presence of the crossed fields E and H. Inasmuch as several ellipsoids 
correspond to a given electron energy in the first Brillouin zone of n-Ge type crystals, the current ji 
should be evaluated for each i-th ellipsoid and these currents should then be summed over all ellipsoids, 
taking their relative arrangement in the Brillouin zone into account. This is valid if the interellipsoid 
transitions caused by electron scattering are neglected, as can probably be done at low temperatures. 

The energy spectrum of an electron with an anisotropic mass in the crossed fields E and H and its 
wave function (for the electron of the i-th ellipsoid) must be found in order to calculate the currents ji. 
To do this, let us write the appropriate Hamiltonian in the system of the principal axes Xi, Yi, Zi of the 
i -th ellipsoid 

( 1) 

where A is a vector-potential, m 1 is the electron transverse mass, m2 is its longitudinal mass (it is as
sumed that the constant-energy ellipsoids are ellipsoids of revolution, as in n-Ge ). By transforming co
ordinates 

and introducing correspondingly the new quantities 

, , , v-
Axi = Axi• Ayi = Ayi• Azi = Azi I s; 

, , , v-
Exi = Exi. Ey; = Eyi. Ez; = Ez; I s (2) 

the operator ( 1) can be reduced to the following form: 
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' 1 ( e '\2 ' ' = = -- p'.-- A·) ..J-.eE, r·· t.7V 2m1 J. C l • L ( 3) 

Here, it should be noted that the transformations ( 2) also lead to the introduction of the field H' = curl A': 

Hxt = H~; 1/s, Hy; = H~; V's, Hz;= H~;; ( 4) 

It is not difficult to verify that EiHi = EH = 0, i.e., Ei l_ Hi. Hence, the original problem ( 1) is reduced 
to finding the energy spectrum and wave function of particles of isotropic mass m1 in the presence of the 
crossed fields Ei and Hi. To solve this problem, it is expedient to transform by rotation to a coordinate 

I -.I I • • I II I I II I system xi, Yi, zi m wh10h Ei oxi and Hi ozi. 
The electron wave function 1/JQ in this coordinate system is3•4 

'Y Qi = exp ({ (P~i y; + p~; z;) ] e- ~ 1212 gcn (~ 1), ~~ = (x;- x~i) V m,w~JIL, w~ 1 = eH; I m,c, (5) 

I I 12 I I • , 

where Xoi eEifm1w0i - Pyi/m1w0i and gcn (g) is the normalized Chebyshev-Hermite polynomial. The 

electron energy spectrum is known to be: 

( 6) 

Since we must calculate the components of the total current along the X, Y, Z axes in ( 5 ) and ( 6 ) , a 
transformation should be made from the xf, Yf, zi system to the X, Y, Z system. This transformation 
yields the following result: 

. , ( 1) 2 Pyi ~~1 . eE (1-s)sin2 .&1 sin2 <:p 1 
cf)Qi = kwoi n + 2 + eEx0 ; + Pzi I 2m1 ~ 1 , Xoi = ------ Pzi (I - s) sm &; cos&; cos 'f;- -- +(1 ) . 2.& . 2 , 

m 1 w 0 m1 w0 m,w~ s -s s1n 1sm <:p 1 

, {i[ . (s-1)sin.&1 sin<:p 1 J} 
'I Qi = exp t; Py;Y; + Pz;2 ; +xi (sm&;COS'ftPy; + cos&;pz;) s + (1-s) sin• &1 sin2 'P; 

,.--
[ (x 1 -x0Y m,w~1 s J [-./m1 w~ 1 Vs ] 

exp -- 21t s + (1- s) sin2 .&1 sin2 'fl; gcn Jl -1t- (x;- Xoi) (s + (1- s) sin2 .& 1 sin2 <:pf' ' 

Q=(n, Pyi' Pz)' w0 =eHim1c; w~=w0 V~;Is, ~;=sin2 & 1 +scos2 Si. 

Here qJi and it i are the first two Eulerian angles of the X, Y, Z .system with respect to the principal 
axes of the i-th ellipsoid. 

( 7) 

Let us turn to the computation of the currents ji. In order to calculate the y and z components, the 
average quantum-mechanical values of the corresponding carrier velocity components must be calculated 
and the quantities obtained must then be averaged over the electron equilibrium distribution: 3 

v~ = ocf)Qi I opyi =- cE I H, v~ = oc[)QI I OPzi =- (cE I H) IX;, IX;= ~-1 (1 - s) sin &1 cos-&1 cos 'f;, (8) 

where the bar denotes the statistical average. The currents are correspondingly determined by the fol
lowing expressions 

(9) 

where Ni is the density of the number of electrons in the i-th ellipsoid. The currents (9) are not ohmic 
-they are not related to the electron scattering and are independent of the scattering mechanism; the cur
rent j~ appears exclusively because of the anisotropy of the electron mass. 

The current j~ is purely ohmic, i.e., it is determined essentially by electron scattering. In reality, 

~ = 0; consequently, the current is determined as the flow of charge through a unit area of the x = 0 
plane, 4•5 caused by scattering: 

·i " )l (l\7~ zi ,17 1 -~~ l ]x =- e L.J ..:...; QQ' ·Q'x- ' Q'Q '·Qa. ' ~;= Xo;(Q') >O, Xot = Xoi (Q) > 0, 
QQ' a~ o:l 

( 10) 

where W~Q' is the probability of a quantum transition of thecurrent carrier fr~m the Q state into the 
Q' state under the influence of a scattering factor (within the i -th ellipsoid);* XQa is the electron equi-

*We neglect the probability of interellipsoid transitions because they occur through the agency of pho
nons with large f, which are few in number at the low temperatures under consideration (f is the wave 
vector of the phonon). 
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librium distribution function. Since we are limited to the case of such fields E for which j~ ,..., E (Ohm's 
law) and since a non-degenerate electron gas is assumed in the semiconductor,* we have (taking spin into 
account): 

Xha = exp {fr- [ f1 - Cl;f'BH - ~w~ Vf; ( n + -{-) - ~;:1 p;]}, (11) 

where a = ± 1, 1-L is the chemical potential, and 1-LB = en/2mc is the Bohr magneton. 
Let us consider the interaction between electrons and long-wave longitudinal acoustic phonons ( defor

mation potential )6 as the electron scattering mechanism and let us disregard scattering by impurity ions 
for the following reasons. We are interested in how energy-level quantization by the field H affects the 
dependence of magnetoresistive phenomena in n-Ge type semiconductors on the direction of the field H 
and on H/T. Hence, it appears that a significant exponential anisotropy of PH and R, dependent on the 
anisotropy of the equilibrium electron concentration N, occurs. It will be shown by further computations 
that precisely this large anisotropy determines essentially the dependence of PH and R on the direction 
of H; the scattering factor (the interaction with phonons in our case) makes only an insignificant contri
bution to the anisotropy of pH, i.e., the anisotropy of the effective mobility u0 = (NepH)-1 is not verysub
stantial. On the other hand, allowance for the scattering by impurity ions, within the framework of our 
method of calculating PH• leads to an additional current 6jx Uy and jz are not determined by the scat
tering) and, therefore, to an additional resistance 6p ~ E6h/j~ (jz = 0, as will be shown). Hence, it can 
be shown that the exponential anisotropy of N (H) is fundamental, as before; while the dependence of Uo 
is determined by the same functions o/i and iti as in the case of scattering by phonons (by the functions 
Qli, f3i) and, as before, is not essential. 

It is understood that 6p can be substantial in magnitude for a sufficient impurity concentration or in 
the case of compensated impurities. But we are interested not in the absolute value of PH but in the ratio 
PH (H)/PHo• where PHo is the resistance for a certain direction of H and E (E j_ H). This dependence 
is determined basically by the anisotropy of N (H). It must also be said that if the impurity concentration 
is small enough (n1 :S 1015 -1016 ) and if the impurity compensation can be neglected, then the energy gap 
between the impurity level and the bottom of the band will be large in comparison with kT at the low tem
peratures under consideration, so that only a very small portion of the impurities is ionized, the scatter
ing by the impurity ions is insignificant and its influence on the resistance PH can be neglected. Actually, 
an essential condition for the appearance of a sudden anisotropy in PH and R is the absence of degen
eracy (see Appendix). In connection with the above, we should like to emphasize that both the sharp de
pendence of PH and R on the field strength H and the strong dependence of these quantities on its direc
tion (exponential anisotropy) depend basically on the character of the change in the equilibrium conduction
electron concentration for nw0 » kT in the absence of electron-gas degeneracy, and not on the character 
of the scattering mechanism.5 

Consequently, we disregard scattering by the impurity ions and assume that the perturbation operator 
V that causes the scattering is the deformation potential:6 

V = D div R (r). 

where R ( r) is the displacement of the lattice at point r. 
Using (7) in the usual manner to determine the matrix elements of V, which are then substituted into 

WhQ· = .3.£- ~ 1 vgQ, l 2 a(d)~- d)~.± ttvf) 
(f) 

and into ( 10 ), we obtain the following expression for the current: 
f, 

j~= M;e~2t2:)' ~ ~ ~ ~ dfx ~~ dpz;dp~; ~~ dpy;dp~;.fWbQ•{[XhaNt-Xh•a(Nt+ 1)] 
a~± 1 n, n'~O fy, fz- f, (x~;> 0 , x0 ;<0) 

X 8. (py;- p~; + n} y) 8. (Pzi- p~; + nfz) a (d)b- dJh• +t.vf) + lxha (Nt + 1)- XQ'a Ntl 8. (Pyi- P~i -hfy) 

X 8. (Pzi - p;;- hfz) o (dJh- dJh·- hvf)}, ( 12) 

* Conditions under which there is no degeneracy in the conduction band are analyzed in the Appendix. 
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where L is the linear dimension of the base region of the crystal, M is its mass, t. (11) = 0 for 11 I 0 and 
1 for 11 = 0, v is the velocity of sound, and Nf is the number of phonons with the wave vector f: 

Nr-+ Nj = [exp (ttvf I kT)- Ip, wbQ· = \_tdx<p~ (x- Xot) <pQ• (x- X~i) eixfx 1
2

, 

<pQ(X-Xut) = 'I"Q(X-Xot)exp{--~- (YtPyt + ZtPzt) }· 

Using the properties of the symbol t. ( 11) and of the <5-function, transforming to the variables 

Tmax:>r;>O, -r;>t;>r; -hfo<w<ttfo, -hfo-<u<ttfo 

and integrating over u and t, we reduce j~ to the following: 
00 j, ltj, 'max 

r.eD2m, (m,cuo)2 ~ i (" H ) ~ ~ ~ f ( E 2kT) 2 ·i JkT ..-B ~ df dw dr fsinhe rf Wi ( W q-l) 
1 x = 8vtt• (2r.)5 e~'- cosh ----pr Li x J w lsinh(nvf 1 2kT) QQ• exp \- 8m1kT t' 1 

n,n•~o-j, -'ftj, o 

where 

X ± 1 Jhcuoi , . m,~i ' , 1 
ot=kT l-2-(n+n +I)+ 2w2 [ttw01 (n-n)±1tvfl2J, 

( 13) 

<5 = M/L3; f0 is the maximum wave vector of the phonon; - fo ::; fx, fy, fz :s: f0; x:i'i ,..., E and, consequently, 
we obtain in the region where Ohm's law holds 

Xi'i = 0, sinh(eEr I 2kT) = eEr I 2kT. 
Let us introduce the symbol 

00 

n,n'=O 

Let us also make the ehange of variable 

then 

. E r.eD2m B. {• f, 2 ( 'ft2f2 ) j' = c -- ----1-' '- efl.JkT. sh fLBll d d f (f Y +a Jz) ex z -I 
x H 8vhkT(21t)5 co (F)~~ fx fz ~ d{ylfzlsinh(1tvf;2kT) p -8m1kT ~~ P. 

-j, -(f,ifz 

(14) 

Analysis of (14) for arbitrary tiw0 leads to very awkward and immense formulas so that the explana
tion of the dependence of j~ on tiw0/kT requires in general numerical integration. We shall consider 
only the case tiw0 » kT (in fact, it is sufficient that tiw0 ~ 3kT ), since it is the only one of interest to us. 

It is easy to sho~·1· that for tiw0 » kT: 

( 15) 

Substituting ( 15) into ('14 ), we obtain 

.1 E 1teD2m,p1 [ 1 ( 1icu~ 1 )] fLBll 
1 x = c -H 81tvkT (2rr)5 exp kT- f'- - --y- coslrkT I i• ( 16) 

where Ii becomes after some manipulation and the introduction of spherical coordinates in the f-space: 
f· 1t/2 

"' f' \ 2 • t• { 'ft2f2 cos2 () ~~m,v2 } 
.ft = 2 ~I df ~dO [tan6 + (2oci - I) sm 6 cos OJ sinh('ttvf !2kT) exp - 8m,pikT - cos2 62kT • 

I) Q 

Introducing new variables 
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and using the notation E = m 1v2/akT « 1, we obtain for T « Tn: 

li = ; (~: r r d~ ~d)-[+ (2oc7- l}l-1nh2'/ 2 exp {- 1~·~;i- :B.i}. 
0 0 

( 17) 

This integral can be evaluated approximately for E « 1: 

I i = 647t (kT j tw)5 (I + 2oc7c1), c1 = const = 1. 

Substituting it in ( 16 ), we obtain finally 

·i _ E 2e2D 2 (kT)4 ( t,ro~i \ fLBH 2 
}x- ll7tat•u•roo exp- 2kTfosll-iT~i(l+2ocic1)eP.fhT. ( 18) 

It was already indicated that to obtain the components of the total current the appropriate components of 
the partial single-ellipsoid currents must be summed over all the constant-energy ellipsoids. Hence, the 
relative arrangement of the ellipsoids in the Brillouin zone must be taken into account. As regards the y 
component of the total current, 

. ~ ·i E '\:'N· EN 1 y = 2.J 1 y = - ec IT 2.J ' = - ec H' , 
i i 

where N is the total density of the number of electrons in the conduction band 

( 19) 

To calculate h and jz, it is expedient to express the angles o/i and {}i by means of angles which the 
electric field E and the magnetic field H, as well as the Y axis, make with the cubic axes in the Bril
louin zone (we denote the cosines of these angles by m 1m2m 3, £1£2£3, and n1n2n3 respectively). 

A different number of ellipsoids, mutually arranged in a different way, can correspond to any one value 
of the energy in the Brillouin zone. We shall confine the analysis to two cases: ( 1) 8 ellipsoids arranged 
in the [ 111] directions in the reciprocal cell lattice, and (2) 6 ellipsoids arranged in the [ 100] directions. 
It is not difficult to confirm that jz = 0 in both cases, as it should be for cubical symmetry of the recip
rocal lattice. 

In the first case, (n-Ge ), after a number of simple transformations, we obtain: 

In the second case, (n-Si ), the expression for h remains the same as (20) but 
3 

Asi = 2 ~ exp {- 'li~o (1 + (s- I) LJ )''' } {I + (S- I)/~+ 2c1 (I- s)2l~n~ (1 + (s- 1) l~fl}. 
t~l 2Vs kT 

2. EXPONENTIAL ANISOTROPY OF THE CURRENT CARRIER CONCENTRATION 

(20) 

(21) 

To determine completely the dependence of h and jy on H and T, both JL (H, T) and N (H, T) should 
be evaluated. Taking ( 7) into account, we obtain the following formula for the i -th ellipsoid, assuming no 
degeneracy (see Appendix) 

(22) 

in which we assume that tiw~i » kT; Z0 = 2( 2rrm1kT /h2 )312. Introducing again the quantities £1£2£3 and 
n1n2n3, we obtain 

N=~Ni=Zo n~o cosh([LBH)eP.fkTB, (23) 
i VsflT kT) 

Boe = ~ exp {- 2~-~:T (I + (oc1l1 + oc2l2 + ocala) 2 s -;-- 1 )"'} [I + s -;;- 1 (oc1/1 + oc2l2 + ocala)2] , ( 24) 
a1a:2:x3~= ±1 
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3 

Bs, = 2 ~ exp {- v""'." (1 + (s -I) 17 ,)\'12} [1 + (s- I) l~ ), 
t~1 2 s kT 

(25) 

To determine the chemical potential Jl we use the neutrality equation and consider a Wilson type impurity 
semiconductor. In this case, the neutrality equation for any JlBH is the following (see Appendix): 

[ 8.£ + 1-L \ 1-L H J-1 1i 1-L H lh 1 + 2 exp (--- lcosiLL = Zo ~cosh_B_ efl.fkT B 
kT ) kT Vs-kT kT ' 

( 26) 

where n1 is the concentration of monovalent donor impurities, ~E is the gap between the impurity level 
and the bottom of the conduction band. Since ~E » kT for low temperatures, then 

(27) 

Substituting (27) into (23 ), we obtain 

N = 1/ 2 (n1Z01iw0 1 Vs kT)'I• e-M/2kT B'l•; ( 28) 

It follows from (28) that, first, the number N decreases exponentially as nw0/kT increases;5 and sec
ond, that this number depends essentially on the direction of H. This second fact is very important; it is 
manifested in the significant "exponential" anisotropy of N. This anisotropy increases with the anisotropy 
of the electron mass and its character depends on the number and mutual arrangement of the ellipsoids in 
the Brillouin zone (Bsi• BGe depend differently on lt ). This anisotropy is caused by the fact that in 
strong fields H the different ellipsoids contain different numbers of electrons which depend on the direc
tion of E. 

3. ELECTRIC RESISTIVITY AND HALL CONSTANT IN A STRONG MAGNETIC FIELD 

Substituting ( 19 ), ( 20 ), and ( 23) into the known formulas of the stationary-states method3 and keeping 
in mind that j~ « j~ in our case, we obtain the following expressions 

(29) 

(30) 

Hence, it follows that as nw0/kT increases both R and pH increase rapidly, basically as exp (nw0/4kT ), 
in conformance with the behavior of N (H, T ). Both R and PH have considerable anisotropy, i.e., de
pend on the direction of H; PH depends also on the direction of E. 

The anisotropy of PH is determined by the factor AB-312, and R"' B-112• The mobility Uo contained 

II 

8 B 

a b 

IJ 

FIG. 1. Curve a: AGe/B~~ is the quantity defining 
-1/2 

the anisotropy of PH forGe. Curve b: BGe is the quan-
tity defining the anisotropy of R for Ge. E is parallel 
to X and H in the YZ plane; £1 = 0; £3 =cos A.3; s 
= m2/m1 = 19. 

in PH = 1/NeUo is also anisotropic; its aniso
tropy is determined by the factor B/ A and is 
considerably less pronounced than the aniso
tropy of N (H, T ). Consequently, the aniso
tropies of PH and R increase with the aniso
tropy of the mass and depend on the number 
and mutual arrangement of the ellipsoids in the 
Brillouin zone (see Figs. 1 and 2). 

Let us note, by the way, that if H is di
rected along one of the cubic axes all the 
above-mentioned quantities are isotropic (in
dependent of the direction of E). 

In conclusion, let us point out that it seems 
to us that an experimental investigation of 
PH and R in semiconductors in strong mag
netic fields at low temperatures affords the 
possibility of obtaining additional information 
on the carrier mass anisotropy and on the 
number, relative arrangement, and character 

of the constant-energy surfaces in the Brillouin zone near the energy extrema. In reality, if the depend-
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ences of PH {£1~!3 ; n1n2n3 ) and R {£1~!3 ) are established experimentally for a semiconductor in a strong 
field H, then, for a given number and arrangement of the constant-energy ellipsoids in the Brillouin zone, 
the exponential anisotropy of PH and R would permit the quantities w0 = eH/m1c and s = m2/m1, i.e., 
m1 and m2, to be determined by a comparison of experimental and theoretical results. The character of 
the dependences of PH { £1£2£3; n1n2n3 ) and R { ! 1£2£3 ) is determined by the arrangement of the constant-en-

.\= 
J a b 

J 

z J 

a/2 "'-1/2 
FIG. 2. Curve a: As/Bsi . Curve b: Bsi . 

E' is parallel to X and H in the YZ plane; !1 = 0; 
! 3 = cos A.3; s = m2/m1 = 5. 

ergy ellipsoids and by their number, which again 
affords a possibility of obtaining answers to this 
question by a comparison with experiment. 

It should be noted that the magnetic suscepti
bility of the conduction electrons, as is easy to 
see, is determined by the expression 

and, therefore, depends on the direction of H; 
hence, the anisotropy of x is again determined 
essentially by the dependence of N on the angles, 
i.e., on !1!2£3. It can be assumed that other kin
etic coefficients have a significant anisotropy for 
Ge type semiconductors in the presence of a 
strong field H. 

All the results obtained above are valid for unipolar impurity semiconductors in the absence of elec
tron gas degeneracy. 

The case of large impurity concentration, when degeneracy of the conduction electrons, scattering by 
impurity ions, and impurity bands can play a substantial role, must be investigated especially as is being 
done at present. 

We take the opportunity to express our gratitude to Prof. A. G. Samoilovich for very fruitful discus-
sions. 

APPENDIX 

Let us determine the conditions under which the electron gas in the conduction band can be considered 
non-degenerate. To do this, let us write the neutrality equation for a Wilson type semiconductor: 

n1 -n = N, (I) 

where n is the density of the number of electrons in the impurity levels and N is the density of the num
ber of electrons in the conduction band. As shown in Ref. 9, taking into account the Coulomb repulsion of 
electrons in the impurity level (monovalent impurity), we get 

( fL + t;,.E \ fLaH ( (fL +/:,.E) flaH )-1 n = 2n1 exp ----w-;cosh~ 1 + 2 exp -----w-- cosh~ . (II) 

On the other hand, under the same conditions 

N=~Ni=~~ ~ dpz~~~ {[exp(";:~ (2n+1)+ 
L t n=O -co 

[ ( 1iw~i i3i1 P; flaH + fL ]-I} 
+ exp 2kT (2n + 1) + 2m1kT - kT ) + 1 ' {III) 

where 

It is seen from (III) that the Boltzmann distribution can be used in this case if p. « % tiw~i - IJ.BH, or, in 
order of magnitude 

!' 4::; lj2hwo (~; / s)'lz- !'aH = Emin· 

(The quantity tiw~i/2 - JLBH determines the bottom of the zone for the i-th ellipsoid.) Let us assume that 
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this condition is satisfied and let us explain what the parameters n1, ~E. m1, and m2 must be here. 
Equation (I) becomes (for tiw0/2 » kT) 

[ I + 2e;'/k~osh !Lrfl ]-l = ~ two e-AEfkTcosJ 11-BH ) Be;'/kT 
kT n1 y 5 kT '\ kT ' 

where P, = J.1. + ~E. It is easy to find from (IV) that ~E » kT. for tiw0/2kT » 1 . 

-'=---~-~- lnB +-!_In n1 VskT 
kT ~ 2kT 2 2 Z01Lw0 

(. 11-BH) In \2coshkT . 

(IV) 

(V) 

It is not difficult to SE~e from (24) and (25) that ln B F::l -tiw0/2kT in order of magnitude. Using this, we 
reduce (V) to 

11 = Emin - ll; - t:o + kJ In n1r;::r + kT [ !1-:: -In (2cosh !Lk~H ) ] . (VI) 

It is seen from (VI) that J.1. « Emin if 

~ + tw0 ~ kT 1 n1 Vs kT + kT [ ~'-BH _ 1 (2 h !LBH )] 
2 4 ~ 2 n Zotwo kT n \ cos kT · 

This inequality is satisfied for the values of ~E and s frequently encountered at low T and not too large 
n1• For example, if .~E F::l 0.01 ev, T...., 10° K, s...., 10, tiw0/kT...., 3, then JJ./kT ~ -4 + ln (2n1 x 10-16 ); if 
n1 < 1020 , J.1. is not only less than Emin ( E min F::l % in this case) but J.1. < 0. Even if it is assumed that a 
certain overestimate of I JJ./kT I (which is not large, as shown in Ref. 6) is made by replacing (ID) by the 
right side of (IV), the assumed non-degeneracy of the electron gas is justified. 

Hence, the electron gas in the conduction band can apparently be assumed to be non -degenerate at the low 
T and high H under consideration for not too large n1 and s and for large enough ~E. 

The above conclusion is in agreement with results of Refs. 9 and 10, where a detailed investigation of 
the conditions of electron gas degeneracy is made for H = 0. However, large H contribute to the ab
sence of degeneracy because the field quantization of the energy level leads to a large increase, in com
parison with kT, in the energy gap between the impurity level and the bottom of the band: tiw0/2 » kT. 

Let us take the opportunity to note that the expression for n in Ref. 5 is not completely exact, but let 
us emphasize that the results of Ref. 5 are true not only for J.I.BH » kT but for any J.I.BH if exp (JJ.BH/kT) 
in the formulas of Ref. 5 are everywhere replaced by cosh (J.I.BH/kT ). 
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