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The equilibrium electron concentration, Hall constant, and electrical resistance of n-Ge type
semiconductors in a strong magnetic field are considered. The dependence of these quantities
on the field strength is determined. It is found that the quantities under consideration are an-
isotropic, the nature of this anisotropy being determined by the anisotropy of the electron mass
and by the number and mutual arrangement of the constant-energy ellipsoids.

IN the past, a number of papers”2 have appeared in which the electric resistivity in a magnetic field py
and the Hall constant R in n-Ge type semiconductors have been considered. It is necessary to take into
account here the anisotropy of the electron mass the the presence of several constant-energy ellipsoids in
the Brillouin zone (six for Si and eight for Ge). However, the analysis was made by the usual kinetic-
equation method without taking into account quantization of the electron energy by the field H, a proce-
dure valid only for sufficiently small H.

In this connection, it is of interest to calculate pyy and R of n-Ge type semiconductors taking the elec-
tron mass anisotropy in strong magnetic fields into account. For this purpose it is necessary to take into
account the above-mentioned electron energy quantization by the field H., The present paper is devoted
to this.

1. CALCULATION OF THE CURRENTS

Let us assume that the electric field E is directed along the X axis and the magnetic field H perpen-
dicular thereto is along the Z axis. To calculate pgy and R taking the energy quantization by the field
H into account, we use the stationary states method3:* Following this method, let us calculate the components
of the electric current j in the presence of the crossed fields E and H. Inasmuch as several ellipsoids
correspond to a given electron energy in the first Brillouin zone of n-Ge type crystals, the current j!
should be evaluated for each i-th ellipsoid and these currents should then be summed over all ellipsoids,
taking their relative arrangement in the Brillouin zone into account. This is valid if the interellipsoid
transitions caused by electron scattering are neglected, as can probably be done at low temperatures.

The energy spectrum of an electron with an anisotropic mass in the crossed fields E and H and its
wave function (for the electron of the i-th ellipsoid) must be found in order to calculate the currents il
To do this, let us write the appropriate Hamiltonian in the system of the principal axes Xj, Yj, Z; of the
i-th ellipsoid

52 = el 2 4 (i 2 T £ ) e )

where A is a vector-potential, my is the electron transverse mass, m, is its longitudinal mass (it is as-
sumed that the constant-energy ellipsoids are ellipsoids of revolution, as in n-Ge ). By transforming co-

ordinates

Xp=xi, Y=Y, 2i=2[Vs, s=my/m
and introducing correspondingly the new quantities
Ay = A, A;ri = Ay, Ayi=A;]V'S; Eui= Eu, E;'i =Ey;, E;= E.]V's (2)

the operator (1) can be reduced to the following form:
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5 = -1—( ———A)—{-eE r (3)

2my
Here, it should be noted that the transformations (2) also lead to the introduction of the field H =curl A”:
Hu=HaVs, Hyu=HuVs, Hu=Hu (4)

It is not difficult to verify that E'H’ =EH =0, i.e., Ej l H'l Hence, the original problem (1) is reduced
to finding the energy spectrum and wave function of part1cles of isotropic mass m, in the presence of the
crossed f1e1ds E1 and Hl To solve th1s problern, it is expedient to transform by rotation to a coordinate
system Xl, Y'l, Z; in which Ej | OX] and H1 I OZ

The electron wave function I,bQ in this coordmate system ig?
1 ’ ’ v _ .2 4 ’ T 3 ’ ’
Yo, = exp [? (PyiYi + pzi23) :le 8% gy G, E=(xi—x) Vmol [k, o, =eH;/mc, (5)
2 . .
where X:)i = - eE’i/miwai - P'yi/miw:)i and Jy (£) is the normalized Chebyshev-Hermite polynomial. The

electron energy spectrum is known to be:
’ 1 ;o ’
6(,,»:hw{,[(n—i—7>+eEix0i+pzzi/2m1. (6)

Since we must calculate the components of the total current along the X, Y, Z axes in (5) and (6), a
transformation should be made from the X'i, Y'i, Z'i system to the X, Y, Z system. This transformation
yields the following result:

Py ! eE (1 —s)sin?9;sin? g;

. 1 . _
Goi = hwyi (ﬂ + 5) +eExoi + pzi [ 2my By, Xoi = — == — = pai (1 — ) sin $; cos ; cos ¢; T el sTI—s)sin® sin%s,

»

(s—1)sin®;sin ¢,
‘IQ-_exp{ [Pyly + P2+ X, (sindicoso; py, + cos i pri) 5 }-(1—s)sm2«9 sin? g J

(x; — xo,')2 my ‘*’0, S Pml ‘”01 ) , Vs (7 )
exp [__ 2k s+ (I—s)sin? §; sin? ¢, ] %”[ l/ R Wi %oi) (s (1 — s)sin2 9, sin? @) ] ’
Q=(n, Py p,), wo=eH [mc; o) = o, ]/,@75, Bi = sin?®; + scos?9,.
Here ¢4 and ¢; are the first two Eulerian angles of the X, Y, Z .system with respect to the principal
axes of the i-th ellipsoid. .
Let us turn to the computation of the currents j!. In order to calculate the y and z components, the

average quantum-mechanical values of the corresponding carrier velocity components must be calculated
and the quantities obtained must then be averaged over the electron equilibrium distribution:?

~zE:Oé’Qi/@pyi:——cE/H, E=6@5’Q1/apzi=——(cE/H)a;, a; =B (1 —s)sin9;cos ¥; cos ¢;, (8)

where the bar denotes the statistical average. The currents are correspondingly determined by the fol-
lowing expressions

jy=—eN'cE/H, j.=—eNc(E/H)a, (9)

where NI is the density of the number of electrons in the i-th ellipsoid. The currents (9) are not ohmic
-—they are not related to the electron scattering and are independent of the scattering mechanism; the cur-
rent jl, appears exclusively because of the anisotropy of the electron mass.

The current ]1 is purely ohmic, i.e., it is determined essentially by electron scattering. In reality,

v’Z = 0; consequently, the current is determined as the flow of charge through a unit area of the x =0

plane,%% caused by scattering:
fe=—e X X (Woo ox—Woo 7oa)r  Foi= %0:(Q) >0, Xor = %01 (Q) >0, (10)
QQ" a==1

where WQQ' is the probability of a quantum transition of the current carrier from the Q state into the
Q’ state under the influence of a scattering factor (within the i-th ellipsoid );* an is the electron equi-

* We neglect the probability of interellipsoid transitions because they occur through the agency of pho-
nons with large f, which are few in number at the low temperatures under consideration (f is the wave
vector of the phonon).
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librium distribution function. Since we are limited to the case of such fields E for which j; ~ E (Ohm’s
law) and since a non-degenerate electron gas is assumed in the semiconductor,* we have (taking spin into
account):

i i = 1 Bt
)(Q,.:exp{/?;—[p——ochH——V%Vﬁ;(n—}—~2—)—2—mlp§]}, (11)

where @ =+ 1, p is the chemical potential, and pg = efi/2mc is the Bohr magneton.

Let us consider the interaction between electrons and long-wave longitudinal acoustic phonons (defor-
mation potential)® as the electron scattering mechanism and let us disregard scattering by impurity ions
for the following reasons. We are interested in how energy-level quantization by the field H affects the
dependence of magnetoresistive phenomena in n-Ge type semiconductors on the direction of the field H
and on H/T. Hence, it appears that a significant exponential anisotropy of pg and R, dependent on the
anisotropy of the equilibrium electron concentration N, occurs. It will be shown by further computations
that precisely this large anisotropy determines essentially the dependence of py and R on the direction
of H; the scattering factor (the interaction with phonons in our case) makes only an insignificant contri-
bution to the anisotropy of py, i.e., the anisotropy of the effective mobility uy = ( NepH)"1 is not very sub-
stantial. On the other hand, allowance for the scattering by impurity ions, within the framework of our
method of calculating pp, leads to an additional current &j, (jy and j, are not determined by the scat-
tering) and, therefore, to an additional resistance 6p ~ Eéjx/j§, (jz = 0, as will be shown). Hence, it can
be shown that the exponential anisotropy of N (H) is fundamental, as before; while the dependence of u,
is determined by the same functions ¢j and ¢; as in the case of scattering by phonons (by the functions
ai, Bi) and, as before, is not essential.

It is understood that 6p can be substantial in magnitude for a sufficient impurity concentration or in
the case of compensated impurities. But we are interested not in the absolute value of py but in the ratio
PH (H)/pHo, where PH, is the resistance for a certain direction of H and E (E l H). This dependence
is determined basically by the anisotropy of N (H). It must also be said that if the impurity concentration
is smallenough (ng < 1015 — 1016) and if the impurity compensation can be neglected, then the energy gap
between the impurity level and the bottom of the band will be large in comparison with kT at the low tem-
peratures under consideration, so that only a very small portion of the impurities is ionized, the scatter-
ing by the impurity ions is insignificant and its influence on the resistance py can be neglected. Actually,
an essential condition for the appearance of a sudden anisotropy in pyy and R is the absence of degen-
eracy (see Appendix). In connection with the above, we should like to emphasize that both the sharp de-
pendence of pg and R on the field strength H and the strong dependence of these quantities on its direc-
tion (exponential anisotropy ) depend basically on the character of the change in the equilibrium conduction-
electron concentration for hiwy > kT in the absence of electron-gas degeneracy, and not on the character
of the scattering mechanism.’

Consequently, we disregard scattering by the impurity ions and assume that the perturbation operator
V that causes the scattering is the deformation potential:®

V = DdivR (r).

where R (r) is the displacement of the lattice at point r.
Using (7) in the usual manner to determine the matrix elements of V, which are then substituted into

i 2 i N i
Woo = 5 2 Vo [8(8q — S, + hof)
@
and into (10), we obtain the following expression for the current:

> L , A .
j;.—_m% Sy 3 dn SS dpzdp;: SS dpyi dpyi fWoqr {[XoaN s — xoa (N + 1))

ez—_-iln,n’=0fy, fz—fo %9 <0)

(x;)l->0.
X A (pyi— Pyi + ify) A (p2i— Pzi + 1f2) 3(Eo— & +10f) + [xx (N5 + 1) — %oa Nyl A (pyi — pyi — Bfy)
XA (pzi — pai — 1f2) 3 (S — E& — hof)}, (12)

* Conditions under which there is no degeneracy in the conduction band are analyzed in the Appendix.
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where L is the linear dimension of the base region of the crystal, M is its mass, A(n) =0 for n # 0 and
1 for n =0, v is the velocity of sound, and Ng is the number of phonons with the wave vector f:

(=) 2
S dxpg (X — Xo1) wor (x — Xoy ) €% | ,

—00

Nj— Ny = [exp (hof [RT) — 1171,  Whe =

Pq (¥ — %) = ¥o (¥ — xoi) exp {—- ;; Yipyi + 2ipz) } .

Using the properties of the symbol A (n) and of the §-function, transforming to the variables
Xoi—Xoi =1, Xoi+Xi=1, Pu—Pu=10, Pzt pu=2u,
rmax>r_>/0, “'r>t>r7 _h’f0<w<hf0, —hf0<u<hf0
and integrating over u and t, we reduce j; to the following:

fo tf, "max
. meD?my (myeo)? B; wrnH hd . I 2
: R A B rfsinh(eEr | 2kT) w 1
jx= SURS (27) et!*T cosh ( ) E g dfx S dw So dr EERC LTl W exp (— ST Bi )

BT oo —in [w Jsinh(hof / 2kT)

X {exp (— Xoi — X12) + exp (— Xo: — X12)}» (13)

where

hoy,; loi ‘ ’
X = g [ (o 1 1) o By (2 — 1) £ h0f )

6 = M/L3; fy is the maximum wave vector of the phonon; —f; = fy, fy, £z = fo; Xiii ~ E and, consequently,
we obtain in the region where Ohm’s law holds

X% =0, sinh(eEr | 2kT) ~ eEr [ 2kT.
Let us introduce the symbol

P = Woer [exp (— Xoi) + exp (— Xoi)l.

n

8

B

Let us also make the change of variable

W= hf;, r*=(h/mw)?(fy + of2)?
then

E meD2m,8B

fo
= upH) { [(Fy+ aif,) B2
e = S e“”‘f:osh(%) _&gdfxdfz y exp( :

Sy T itz — 2z g7l 14
S, dfy [T Isinh(Rof [ 26T) 8m kT i )P : (14)
—%iJz
Analysis of (14) for arbitrary hw, leads to very awkward and immense formulas so that the explana-
tion of the dependence of j} on fiwy;/kT requires in general numerical integration. We shall consider
only the case hwy > kT (in fact, it is sufficient that fiwy & 3kT), since it is the only one of interest to us.
It is easy to show® ! that for hw, > KkT:

oy, 2 f2
Pz?exp{—ﬁ—%—;;pi}. (15)
z

Substituting (15) into (14), we obtain

.0 E meD2m83; 1 hay; ugh
Ie = C5 ShorT @mpp ©XP [W’(” T2 )]”s’fﬁl"’ (16)
where Ij becomes after some manipulation and the introduction of spherical coordinates in the f-space:
T }(" s 0 Tvand 2 . e #2/2 cos? 3 mv?
.11 = TJ df Sd [tan + (2“,' —_ 1) sin 8 cos 0] sinh('hvf—mﬁ exp {— 8m13ikT T Cos?02ET } .
0 0

Introducing new variables
A=cosl, nof/kT =0(, O0<LLKwfo/kT =Tp/T,
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and using the notation € = myv?/akT « 1, we obtain for T « Tp:

]iz—%‘—(g}—)Eichid)\[%(Qa?— D) 2] g exp {—1%?—;—2—32} (17)
0 0

This integral can be evaluated approximately for ¢ « 1:
I~ 64x (kT | h0)® (1 + 20%c;), ¢, = const =~ 1.
Substituting it in (16 ), we obtain finally

.i 2e2D? (kT)4 7“‘";'

It was already indicated that to obtain the components of the total current the appropriate components of
the partial single-ellipsoid currents must be summed over all the constant-energy ellipsoids. Hence, the
relative arrangement of the ellipsoids in the Brillouin zone must be taken into account. As regards the y
component of the total current,

“M

jy= ]}:—ec—f«S‘Nl-——ec—g\N, (19)
where N is the total density of the number of electrons in the conduction band

To calculate jy and j, it is expedient to express the angles ¢; and 3; by means of angles which the
electric field E and the magnetic field H, as well as the Y axis, make with the cubic axes in the Bril-
louin zone (we denote the cosines of these angles by mymymg, 44¢;, and nynyng respectively).

A different number of ellipsoids, mutually arranged in a different way, can correspond to any one value
of the energy in the Brillouin zone. We shall confine the analysis to two cases: (1) 8 ellipsoids arranged
in the [111] directions in the reciprocal cell lattice, and (2) 6 ellipsoids arranged in the [ 100 ] directions.
It is not difficult to confirm that j, = 0 in both cases, as it should be for cubical symmetry of the recip-
rocal lattice.

In the first case, (n-Ge), after a number of simple transformations, we obtain:

=B ol
%o —1 2 —1
Aoe = E—xfxp {—ZVS_C.’&T [1 + ST (o2ly F el + “313)2] }{1 + 2 (ol Faylytotgly)?
1 -
191 (1—8)2(aty Ly Fatgly -+ atgls) (oty 11y H-atgriy ++atgng) [1 43 7= (ly + %sl, +a313)2] 1}, (21)

In the second case, (n-Si), the expression for jy remains the same as (20) but

3
Asi=2 Sexp = =Dy b+ = ) B 20, (=9 i (L (5= 1) £

2. EXPONENTIAL ANISOTROPY OF THE CURRENT CARRIER CONCENTRATION

To determine completely the dependence of jx and jy on H and T, both p(H, T) and N (H, T) should
be evaluated. Taking (7) into account, we obtain the following formula for the i-th ellipsoid, assuming no
degeneracy (see Appendix)

. Tw)li ! y,H
Ni(H, T):ZO—Zk—OT—eXp] ZkT + ul?coshFT— , (22)

in which we assume that ﬁwai > kT; Zy = 2(2mrmkT/h? )3/ 2, Introducing again the quantities ¢ and
nyneng, we obtain

= S'"Ni— fiog ugH |RT
N=dNi=2Z, V_chosh(_k_T_> e+ T B, (23)

1+

i

Bge = Z exp { 2V kT <1 + (ayly + aoly + “313) ! (@113 + o5ls +°‘813)2] ’ (24)

Xy A%y == =1
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3
o . heo _ 2 V2 , . 2 5
Bs,—2t§exp{ 2Vs~kT(1+(s ) }[l—r(s 2] (25)

To determine the chemical potential u we use the neutrality equation and consider a Wilson type impurity
semiconductor. In this case, the neutrality equation for any pgH is the following (see Appendix):

3 H7- H
1y [1 4 2exp (AE/Q#}OS&I;BT:I 1—_— Z, V?Z;‘COSh%_ eIkl B, (26)

where n; is the concentration of monovalent donor impurities, AE is the gap between the impurity level
and the bottom of the conduction band. Since AE > kT for low temperatures, then

owihT 1 <"le_ kT) ® o~ AE/2KT Bl . (27)
2cosl pBH Zoheoo
COSll ——+—

kT

Substituting (27 ) into (23), we obtain
N =1/, (nZohwo | V's kTl e~DE/2KT B'ls; (28)

1t follows from (28) that, first, the number N decreases exponentially as Hiwy/kT increases;? and sec-
ond, that this number depends essentially on the direction of H. This second fact is very important; it is
manifested in the significant “exponential” anisotropy of N. This anisotropy increases with the anisotropy
of the electron mass and its character depends on the number and mutual arrangement of the ellipsoids in
the Brillouin zone (Bgj, Bge depend differently on £ ). This anisotropy is caused by the fact that in
strong fields H the different ellipsoids contain different numbers of electrons which depend on the direc-
tion of E.

3. ELECTRIC RESISTIVITY AND HALL CONSTANT IN A STRONG MAGNETIC FIELD

Substituting (19), (20), and (23) into the known formulas of the stationary-states method® and keeping
in mind that ji < j§, in our case, we obtain the following expressions

R=~— (2/ec) (kT V's | nyZyheo,) e AE/2kTIB="1; (29)
o == AB—1eAE T D2l (BT e/ 8231508 (RZo)2 €2 Y 1y, (30)

Hence, it follows that as hwy/kT increases both R and pp increase rapidly, basically as exp (hwy/4kT ),
in conformance with the behavior of N (H, T). Both R and py have considerable anisotropy, i.e., de-
pend on the direction of H; py depends also on the direction of E.

The anisotropy of py is determined by the factor AB™3/ 2 and R~ B™1/2, The mobility u, contained
in pg = 1/Ney, is also anisotropic; its aniso-

AJ;” ’ . tropy is determined by the factor B/A and is
’ P considerably less pronounced than the aniso-
tropy of N (H, T). Consequently, the aniso-
4t s tropies of pg and R increase with the aniso-
tropy of the mass and depend on the number
a b . . .
and mutual arrangement of the ellipsoids inthe
¢} vk Brillouin zone (see Figs. 1 and 2).
Let us note, by the way, that if H is di-
rected along one of the cubic axes all the
’ ) . \13=0. ) ‘ A=0° above-mentioned quantities are isotropic (in-
¥ ) "z o y 4§ 0z dependent of the direction of E).
In conclusion, let us point out that it seems
FIG. 1. Curve a: AGe/ Bgé is the quantity defining to us that an experimental investigation of
the anisotropy of py for Ge. Curve b: Bni/2 is the quan- Py and R in semiconductors in strong mag-

Ge
tity defining the anisotropy of R for Ge. E is parallel

to X and H inthe YZ plane; £ =0; £3 = cosAg; s
= mz/ml =19,

netic fields at low temperatures affords the
possibility of obtaining additional information
on the carrier mass anisotropy and on the
number, relative arrangement, and character
of the constant-energy surfaces in the Brillouin zone near the energy extrema. In reality, if the depend-
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ences of py (464; nynyng) and R (4£4;) are established experimentally for a semiconductor in a strong
field H, then, for a given number and arrangement of the constant-energy ellipsoids in the Brillouin zone,
the exponential anisotropy of pg and R would permit the quantities wy = eH/myc and s = my/my, i.e.,
my; and my, to be determined by a comparison of experimental and theoretical results. The character of
the dependences of pyy (£4p4s; nnyng) and R (4443) is determined by the arrangement of the constant-en-
ergy ellipsoids and by their number, which again

Asaly A ¥ ' affords a possibility of obtaining answers to this
J a b question by a comparison with experiment.

J 3 L It should be noted that the magnetic suscepti-
bility of the conduction electrons, as is easy to
- see, is determined by the expression

i I x:_*‘zB_( YB3 N, T),

kT myms

l"=0 }»J=ﬂ . .
Vi . . 3 P g . ! JL 7 and, therefore, depends on the direction of H;
3/2 12 hence, the anisotropy of x is again determined
FIG. 2. Curve a: ASi/ Bg; . Curve b: Bgi . essentially by the dependence of N on the angles,

E’ is parallelto X and H in the YZ plane; 4 =0; i.e., on £440;. It can be assumed that other kin-

f3 = cosAg; s =my/my = 5. etic coefficients have a significant anisotropy for
Ge type semiconductors in the presence of a
strong field H.

All the results obtained above are valid for unipolar impurity semiconductors in the absence of elec-
tron gas degeneracy.

The case of large impurity concentration, when degeneracy of the conduction electrons, scattering by
impurity ions, and impurity bands can play a substantial role, must be investigated especially as is being
done at present.

We take the opportunity to express our gratitude to Prof. A. G. Samoilovich for very fruitful discus-
sions.

APPENDIX

Let us determine the conditions under which the electron gas in the conduction band can be considered
non-degenerate. To do this, let us write the neutrality equation for a Wilson type semiconductor:

ﬂl—ﬂ=N, (I)

where n is the density of the number of electrons in the impurity levels and N is the density of the num-
ber of electrons in the conduction band. As shown in Ref. 9, taking into account the Coulomb repulsion of
electrons in the impurity level (monovalent impurity), we get

n=2n exp( iﬁE \jcosh (1 + 2exp ( bt OF )cosh yfTH )ﬂ . (11)
On the other hand, under the same conditions
N= Z Ni = ?_‘, HZEO S dpe oL {[exp (thT 2n + 1)+ i:k; + )+ 1]—1
+[exP(h2kT (2n+1) + S:kz;z - FBH+H >+1] }’ (TI1)
where
wo; = @y 52 (sin?9; + s cos? 9;)'h B: = sin%9; 4 scos? ;.

It is seen from (IIT) that the Boltzmann distribution can be used in this case if p « 1/ﬁiw{,i —pgH, or, in
order of magnitude

<K Yohoy (Bi/ s)'h— ppH = emin.

(The quantity ﬁw{,i/ 2 — pupH determines the bottom of the zone for the i-th ellipsoid.) Let us assume that
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this condition is satisfied and let us explain what the parameters n;, AE, m,, and my must be here.
Equation (I) becomes (for Hwy/2 > kT)

Fier, o MET TN Zy ke upH it

[1 + 2¢ cosh-TT——] _n—:’v_s_k"_re AF(thosh( b )Be“ ) (1V)
where 1 =p + AE. It is easy to find from (IV) that AE » kT for Hwy/2kT » 1.
w __ _AE InB , 1. mV skl upH

P T TET ——2—+'2_m—12—07s,T—1“ <2cosh e ) (V)

It is not difficult to see from (24) and (25) that InB ® — Hwy/2kT in order of magnitude. Using this, we
reduce (V) to

, AE o KT VST ugH vgH
B emin — =5~ — 7=+ - In nlzorj»o +iT [ 1o (2°°Sh kT ) : (VI)

It is seen from (VI) that p <« epip if

—%5— + 'h_Z’o__ >>%—ln nlzlofhi:T -+ kT[ “571:] —In <2cosh “:: )] .
This inequality is satisfied for the values of AE and s frequently encountered at low T and not too large
ny. For example, if AE ® 0.01ev, T ~ 10°K, s ~ 10, hwy/kT ~ 3, then u/kT ® —4 + In (2n, X 10718); if
ny < 10%, 4 is not only less than emin (€min ~ % in this case) but p < 0. Even if it is assumed that a
certain overestimate of |u/kT| (which is not large, as shown in Ref. 6) is made by replacing (III) by the
right side of (IV), the assumed non-degeneracy of the electron gas is justified.

Hence, the electron gas in the conduction band can apparently be assumed to be non-degenerate at the low
T and high H under consideration for not too large n; and s and for large enough AE.

The above conclusion is in agreement with results of Refs. 9 and 10, where a detailed investigation of
the conditions of electron gas degeneracy is made for H = 0. However, large H contribute to the ab-
sence of degeneracy because the field quantization of the energy level leads to a large increase, in com-
parison with kT, in the energy gap between the impurity level and the bottom of the band: fiwy/2 > kT.

Let us take the opportunity to note that the expression for n in Ref. 5 is not completely exact, but let
us emphasize that the results of Ref. 5 are true not only for ugH > kT but for any pgH if exp (pgH/KT)
in the formulas of Ref. 5 are everywhere replaced by cosh (ugH/KT ).
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