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which is lmown to satisfy Eq. ( 1) and the condition given in ( 7 ). In cases (I) and (II) we have 

W == i l ( f + ~) (k~ + k~)] = - uk2 , ( 38.I) 

ky = 0; kx = ikz = k <, 0, w = ~ ( g + ~ k2) = - ukx. (38.II) 

In case I we do not obtain stable waves of the form given in (37). In case II we obtain a wave which de
cays in the z-direction and which is characterized by a penetration depth 

d = - 1 I k = (pu2 I 2a) (1 ± VI - 4ag / pu4). (39) 

Thus, the vortex magnetohydrodynamic surface waves have the same propogation and decay relations as 
the potential waves with the one exception that the current density is not zero; these waves are similar to 
the skin effect in this respect. 

1H. Alfven, Cosmical Electrodynamics, (Russ. Transl.), IlL, Moscow, 1952. 
2C. Walen, Ark. f. Mat., astr., o. fysik, 30A, 15; 31B, 3 (1944). 
3 A. Kislovskii, Theory of Surface Waves in Magnetohydrodynamics, Moscow State University, 1956 

(Author's abstract of dissertation). 
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Some problems relating to the dynamics of a quasi -neutral plasma formation situated in the 
field of a plane electromagnetic wave are considered. The method of successive approxima
tions is employed. It is shown that within the limits of the assumptions underlying the anal
ysis a plasma bunch tends to spread out. 

IN connection with the proposal of a radiation method of accelerating particles1 the question has arisen of 
the behavior of a quasi -neutral plasma condensation situated in the field of an electromagnetic wave and, 
in particular, the question of the stability of such a condensation. A more or less rigorous solution of 
this problem encounters formidable mathematical difficulties. Therefore it is not without interest to con
sider a simplified problem which would nevertheless allow one to obtain approximate estimates of the 
magnitude and the nature of the forces acting on the condensation. The present paper is devoted to the 
examination of one of these simplest cases. 

We consider a syst,em of electrons and ions subjected to an incident plane electromagnetic wave with a 
propagation vector k parallel to the z axis. By using the hydrodynamic description of plasma,* which is 

*We shall not consider here questions concerning the permissibility of applying the hydrodynamic ap
proximation. 
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apparently quite permissible in order to obtain results of an exploratory nature, we shall describe the sys
tem by specifying the densities Pi• p and the velocities vi and v of the ions and the electrons respectively, 
and we shall assume that the total number of electrons is equal to the total number of ions, i.e., 

~ p;(r) dr = ~ p (r) dr. 

Since the mass of the ion is much larger than the mass of the electron, then in the first approximation 
we may consider the ions to be at rest, i.e., vi = 0, and to have a time-independent density distribution 
Pi =Po (r ). If the variable external field is described by means of the vector-potential Aext = { Ao, 0, 0} 

x eikz -iwt while the self-field is described by means of the potentials A.(r, t) and cp(r, t) then the equa
tions which determine p, v, cp and A will have the form: 

ap I at =- V (pv); (1) 

[av ] e { 1 aA 1 aAext 1 1 } 2 n . 
p at+(vV)v =-nip Vcp+c-ar+-car ~7 [v[VAJJ- 7 [v[VAextll -vrvp, (2) 

DA=-(4nelc)pv; Drp=-4rre(p0 -p). (3) 

Here vT plays the role of the speed of sound in the plasma. Equations ( 1) - ( 3) represent a system 
of non-linear differential equations. By utilizing the formalism of Green's functions we. shall write the 
system of equations ( 2), ( 3 ) in the form of a single (non -linear) integro-differential equation. We then 
obtain: 

where 

ap 1 at = - v (pv); 

av e { 1 1 } V'p at + (vV) v =- E :+- E (pv) +- [vHext] +- [vH (pv)] - V 2r-; m ert c c p 

E (pv) =- c~ gt ~ ~ G (rr'tt') v (r't') p (r't') dr'dt' + e grad div ~ ~ G (rr'tt') dr'dt' ~ v (r't") p (r't") dt"; 

H (pv) = fcurl ~ ~ G (rr'tt') v (r't') p (r't') dr'dt', 

G (rr'tt') =a (t'- t +I r- r' I) c) I I r- r' 

is the Green function satisfying the equation: 

D G (rr'tt') = - 4no (r- r') a (t- t'). 

(4) 

( 5) 

( 6) 

(7) 

The exact solution of Eqs. ( 4 ), ( 5) is difficult;* however, under certain assumptions it is possible to ob
tain an approximate estimate of the magnitude of the forces and apparently to reach some conclusions with 
respect to the nature of the possible deformations. In particular, we shall tackle the problem on the as
sumption of small non-linearity and of weak self-fields. Thus, we assume: ( 1) that the particle density 
is not too high, i.e., Eext » E, ( 2) that the external field and the wavelength are such that t v / c « 1, and 
we shall solve the system of equations ( 4 ), ( 5) by the method of successive approximations taking for our 
small parameter A. the ratios E/Eext and v /c. Moreover, we shall assume that Po (r) satisfies the fol
lowing conditions: (1) Po (r) is a function of the radius only, ( 2) Po (r) varies slowly for r < a, and falls 
off sufficiently rapidly for r >a where a is a characteristic dimension of the system (for example, like 
exp {- (r/a )n} where n :::::: 2 ). 

Now by representing p and v in the form 

* In general, the exact solution of ( 4) , ( 5) does not appear to be required since it will not be able to 
give us a sufficiently detailed answer to the questions of interest to us because of the assumption made 
above that the ions are at rest; however, the consideration of the case of high densities is of some interest 
even within the limitations imposed on the problem considered above. 

tThe criterion for the fulfillment of the above conditions will be obtained below. 
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p=p0 (r)+2:1..npn(r), V=V0 (r)+ ~),nvn(r) 

and substituting into ( 4) and ( 5) we shall obtain after restricting ourselves to terms up to the second 
order (in A.) inclusively: 

so that consequently the force acting on the electrons of the condensation is given by 

- m[(v0V) V 0 + (v0V) V 1 + (v1 V) v0 - v}~~"], 

( 8) 

(9) 

( 10) 

where v0, v1, p are determined by (9 ). We note that if we start to calculate the next approximations we 
shall obtain secular terms, and that consequently the series for p and v diverge. However, for suffi
ciently small times t < T RJ cw/vw~ the expressions for p, v and consequently for F, remain valid, and 
since for the reasons given above (see second footnote) we are not interested in an exact solution of our 
problem, the result obtained above appears to be satisfactory. Moreover, we regarded the term 
v2T'\lp0/p0 as being of second order; in the opposite case (i.e., at sufficiently high temperatures) insta
bility apparently occurs. 

Since we are interested either in constant forces, or in forces varying slowly in time (in comparison 
with the frequency of the external field) the expression for F may be averaged over a time of the order 
of several periods T '= 2rr/w, and it may be easily shown that in the course of this averaging a number of 
terms drops out and we obtain: 

(11) 

where ~0 and ~1 are determined by 

( 12) 

while the bar indicates averaging in time. 
The physical nature of the first two terms in the expression for the force is clear: they take into ac-:

count the interaction of the particles with the external and the self magnetic field; the term v:-Y'V has a 
form analogous to the force acting on a dipole in an inhomogeneous field. Indeed, since 8v/8t ~ E and 
v,..., 8P/8t, then 

(PV) E ~ (~ vdtV) av 1 at, 

and since 

~ (~ vdtV)v = 0, 

then it follows from thi.s that v:-Vv,..., P · VE (here P denotes the dipole moment). 
Thus the problem has been reduced to finding E (p0v0 ) and H (p0v0 ), or by virtue of the relations 

1 aA 1 a'P 
E=-·V'f-cat' H=[VA], (vA)+ caT=O 

to finding the vector potential 

A (rt) = 7 ~ ~ ~ ~ G (rr'tt') p0 (r') v0 (r't') dr'dt'. ( 13) 

,..., 
Substituting v0 from ( 12) (the solution of which is elementary) into ( 13) and integrating we obtain: 

A={A,O,O}, 
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2 CX> 

A = - 4rrkA0 -~ "" in+l (2n + 1) In (kr) P n (cos 6) e-l"'t, 
me kl 

n=o 
co 

r 

In (kr) = h~1l (kr) ~ p0 (r') i~ (kr') r'2 dr' 
0 

+in (kr) ~Po (r') in (kr') h~11 (kr') r' 2 dr'. ( 14) 

Here r is the radius drawn from the center of the condensation to the given point, e is the angle between 
the z axis and r, jn(kr) and hb11 (kr) are the spherical Bessel and Hankel functions, Pn are the Legen
dre polynomials. 

Now by determining E and H from ( 14) and ;;1 from ( 12) and substituting into ( 11) we obtain (after 
averaging) the desired expression for the force. We can specify the conditions under which we can use 
the expressions obtained in this way by taking into account the conditions under which the method of suc
cessive approximations may be used: 

w~ / w2 <:: 1, eA 0 / mc2 (ka)'" ~ 1, h _ {1 for ka«; 1 2 _ 4rre2 (O) w ere rx. - w0 -- -Po . 
0 for ka> I, m 

(15) 

Thus the problem has been solved. However, the expression for the average force obtained in the form of 
an infinite series is extremely complicated, and this does not permit us to draw any direct conclusions 
with respect to the nature of the deformations obtained. Therefore we shall take as an example a particu- · 
lar case in which the characteristic dimensions of the system and the wavelength are such that ka « 1. 
In this case by expanding the expressions obtained above in powers of ka and by limiting ourselves to 
terms of order ka we shall obtain for r ~ a: 

and for r :::: a: 

where 

N is the total number of electrons in the condensation. 

(16) 

( 17) 

( 18) 

Since we are mainly interested in questions of stability it is easier to deal not with the Cartesian com
ponents, but only with the radial component of the force. For r ~ a it has the form: 

F = _ 3crrN! J_~ [3+ _y"] kr + 3 [1- p0 (r)/ p0 (0)] [ 3 _x2 _ 1]+ __1__ ~ ap0 (r)} _ v}m ap0 (r). ( 19 ) 
r 2 (ka)3 )35 r 2 kr r2 Po (0) r 2 akr Po (r) ar ' 

and for r:::: a: 

(20) 
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where 

a" ( a2 ) { 1 ( a2 ) ( y2 J x2 + z• ( a2 ) x2 z• ( a2 \ } <Dr= --3- 1-- - 9-5- 3-2-- kr --- 1---- kr + -. 1-5-. )kr . ,a r• 70 r2 r2 / 2r• r2 2r4 r2 (21) 

Let us examine these expressions. First of all we emphasize once again that the results obtained above 
are only valid for a final time t < T and consequently become invalid when the deformation of the conden
sation becomes appreciable. Therefore the present calculation does not pretend to give a more or less 
complete solution of the problem of stability, but is in the nature of only an approximate estimate, which, 
nevertheless, enables us to establish at least in general outline the tendency of the condensation to become 
deformed, and the nature of such a deformation. 

Since we have assumed that (ka) « 1 the second and the third terms in the curly brackets will, gen
erally speaking, be larger than the first one by a factor 1/ (kr )2 and, consequently, in the region where ~ 
and ~' differ from zero they will play a determining role. The first term is alway positive and conse
quently gives rise to a force directed towards the center of the condensation; on the other hand, the third 
term is always negative and gives the largest contribution at points of the most rapid rate of falling off of 
the function p0(r ), i.e., at the "boundary" of the condensation. With respect to the second term we see that, 
depending on the value of x, it can be either positive or negative, i.e., it can give rise to a force directed 
either inwards or outwards with respect to the condensation, and that at sufficiently large distances (at 
points where Po - 0 :md 8p0/8r- 0) it plays the decisive role. 

We thus see that near the center of the condensation the force acting on the electrons (and, in particu
lar, its sign) is completely determined by the behavior near zero of the function Po ( r) and of its first 
derivative; while at values of r such that Po - 0 and 8p0jap - 0 forces appear which are directed away 
from the center and which lead to the spreading of the peripheral particles of the condensation in the yz 
plane. 

Thus, summarizin:g, we can say that the results obtained above show that the plasma condensation has 
a tendency to spread, at least for ka « 1. With respect to the case ka ~ 1 we have not succeeded in draw
ing any definite conclusions in view of the extremely complicated nature of the expressions obtained for 
v, E, H and F. 

We note in conclusion that calculations made taking into account a constant magnetic field along the z 
axis have shown that in broad outline the picture remains the same with the only difference that the spread
ing in the yz plane is now replaced by spreading along the z axis. 

1 V. I. Veksler, Proceedings CERN Symposium on High Energy Accelerators and Pion Physics, Geneva, 
June 1956, Vol. 1, p. 80. 
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