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All possible variants of pseudoscalar mesodynamics with third-order self-action are con­
sidered. Asymptotic expressions are obtained for the nonrelativistic potentials of point nu­
cleons. Studies are also made of the solutions of the resulting nonlinear equations that cor­
respond to plane waves, and of the question of the definite character of the energy density. 

THE introduction of nonrenormalizable nonlinear equations into the quantum field theory seems to be the 
only promising way of overcoming a number of difficulties in the present mesodynamics and meson theory 
of nuclear forces. The different values of the coupling constant g2jnc obtained from various experiments 
on the interaction of nucleons give a quite definite indication that the interaction of nucleons is a nonlinear 
one, and that the value of the coupling constant is always an effective value depending on the nature of the 
experiment. Also it is hardly possible to give a convincing explanation of the fact of the saturation of nu­
clear forces outside the framework of a nonlinear theory. 

In the present paper we consider nonlinearities in the equations of the meson field in the form of terms 
of third order with respect to cp. Out of all possible forms of such self-action, that of the type "'A cp3, and 
the associated Schiff equation1 - 3 

have been studied in more or less detail. 
Here consideration is given to all possible variants of pseudoscalar mesodynamics with third-order 

self-action. Asymptotic expressions are obtained for the nonrelativistic potentials of point nucleons for 
the various types of self-action. They all show the presence of movable singularities for a definite sign 
of "'A. The conditions for saturation are examined in connection with the sign of "'A. Studies are also made 
of the wave solutions of the nonlinear equations that correspond to plane waves, and of the question of the 
definiteness of the energy density. 

1. GENERAL RELATIONS 

The initial assumptions adopted are as follows: 
( 1) General covariance of all equations in the four-dimensional space; ( 2) conservation of energy and 

momentum in the free field; ( 3) the possibility of the passage to the limit ko - 0 for arbitrary nonlinear­
ities without the appearance of additional divergences. 
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The first-order4 Lagrangian most convenient for our purposes is taken in the form 

L (l) = cx ('-\!+ (p)_a,'ax). + k0) ·~ + ( A/2) 'i+p' ·~ · ·~+?"·~), 

where 

( 1.1) 

( 1.2) 

( 1.3) 

The matrix 1/J is either a complete (in the case of a separable mixture of fields ) or a contracted (in the 
case of a pure field) undor of the second rank.5 

From postulate ( 1) it follows obviously that I/J+{3'1/J x !fJ+f3"1/J is an invariant contraction of the operators 
{3' and {3" belonging to the complete Kemmer group G126, and also that these two matrices can differ only 
by diagonal factors belonging to the commutative subgroup of G126 • These latter, again from the require-

4 
ment of covariance, must be expressible in terms of the restricted basis I, R5 (R5 = IJ RJ..L) 6 

J..L=t 

R.' = 0 a'!+ b'R.s, R." =a" I -1- b"R.s· 

( 1.4) 

( 1.5) 

The variation in L ( 1 ) to obtain the field equations is carried out independently with respect to the po­
tentials and the intensities, 

( 1.6) 

and therefore requires precise specification of the commutative properties of {3 with respect to the sepa­
ration operators. The possible cases are 

(A) (I ±R.s) l:l (I =f R.s) = 0, (B) (/ ± R.s) P (/ ± R.s) = 0. 

In case (A) the operator {3 is diagonal in the space !fJ{I)!fJ(II), but not so in case (B) . 
It is now easy to obtain the field equations for the cases (A) and (B) from the Lagrangian ( 1.1) . 

2. ON THE METHOD OF MERGING THE FIELDS 

The problem of merging two spinor fields with nonlinear self-action is very elementary, so that we con­
fine ourselves to some brief remarks. 

The order of the self-action is lowered by the merging. If the order of the self-action in the spinor 
equations is n, then the order of the self-action in the boson equations obtained by merging them in pairs 
is simply (n + 1)/2. 

The merging of Dirac fields with third-order self-action gives the general result 

p).d•'?Jdx). + k0·{ + A1S~+R.'•f + A2Sp,,:~+R."pfL'f + A3 S[p[Lpv] •'/R"' [P:"Pvl ·~ + (_NL) = 0, (2.1) 

where (NL) denotes nonlinear terms formed from those stated by a Larmor transformation, and 

is a scalar projection operator. The total number of constants A is fixed by the choice of the original non­
linearity. 

An essential point is that in a pure pseudoscalar field a quadratic self-action is impossible, and the 
ps-field obtained by the merging of Dirac fields with self-action of the type "Aq} is linear. A paper by 
Heisenberg7 has proposed for the universal description of quantum fields the nonlinear spinor equation 

(2.2) 

In addition to the serious criticism of this theory, given by Kita,8 it must be remarked that the merging 
of such fields does not !P.ve the needed result for meson fields for the following reasons: 

1) There is no term in ko. and the connection between the intensities and the potentials in the meson 
equations depends on A.; also the field intensity diverges for A.- 0. Thus the entire scheme does not con­
form to the correspondence principle. 
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2) The second-order self-action obtained by the merging gives nonlinear corrections in static fields 
with central symmetry only for the practically uninteresting case of scalar fields. 

3. PSEUDOSCALAR FIELDS 

The pseudoscalar theory is obviously of the greatest interest for practical purposes, both because of 
the pseudoscalar nature of 1r-mesons and because for this type the linear approximation gives the least bad 
results. 

Let us consider the different operators {3 in the nonlinear terms of the wave equations of a ps field with 
self-action of the third order. For such fields the densities with {3 = [ {31J.f3v) and {3 = {35{31-L are in general 
equal to zero. 

The self-action with {3 = { {31-Lf3v} refers to a type of weak gravitational self-actions, and we shall not con­
sider it. There remain the cases 

(A) ~=I, R5 , 

(B) ~ = ~"' R5~ 1~-

( 3.1) 

(3.2) 

For the R-operators we confine ourselves to the simplest types (the other possibilities are equivalent 
to pairwise combinations of the nonlinearities obtained below, with the introduction of two constants At and 
"-2 ) : 

I. R' = R" =I, (3.3) 

2. R' = R" = (1/2) (/ + R5 ), (3.4) 

3. R' = R" = (1/2) (I- R5 ), (3.5) 

4. R' = (1/2) (I± Rs), R" = (1/2) (I =F R6). ( 3.6) 

Cases At and A2 lead to extremely complicated equations; in the static approximation they are equiva­
lent and give oscillating potentials with movable singularities. These equations will not be considered in 
what follows. The remaining cases give the following equations for real fields (besides the wave equa­
tions we give the expressions for the corresponding energy-momentum tensors, which are needed in what 
follows; the question of the derivation of these equations will not be considered owing to lack of space): 

I. (02 - k~) 9- i.73 = 0 (A3 ) 

T~~L) = T~Ll(o) + (k~/2) Of'.v'f2 (1 + ).·l/2). 

II. (02 - k~) '?- i.q> Wf/OXJ..) 2 =- 0 (Ba) 

r~r:,L) = (T~~)(O) + (k~/2) O~v (exp (i.cp2)- 1)) exp (-i.:p2). 

III. (02 - k~ (1 + l.q>2)) c.p -l.c.p (o:;;;ox)Y/(1 + 1.92) = 0 (A4, B1, B2) 

T~L) = (T~~)(o)- (k~;2l.) o 1~" (1- i. 2 c.p 4))/(1 + l.cp 2). 

IV. (02 - k~ (1 + i.·l)) 'f- 2/.c.p (o9;ax~.) 2/(l + i.q;2 ) = o (B), 

T~r:,L) = (T~~)(O) + (k~j2i.) Of'.v ( 1 + ).'f2)2 )n ( 1 + ).'f2))/(l + ).q;2)2. 

Here 

4. STATIC SOLUTIONS9 

For A > 0 Schiff's equation has the asymptotic solution10 

'f (x) = gjx ln (xjx0 ), 

where 

" 

(3. 7) 

(3.8) 

(3.9) 

( 3.10) 

(3.11) 

( 3.12) 

( 3.13) 

( 3.14) 

( 3.15) 

(3.16) 

( 4.1) 
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( 4.2) 

In the limit ko- 0, corresponding to I xI - 0 (more precisely, I xI « ko -1 ), Eqs. II to IV take the form 

( 4.3) 

where 

Generally speakin~:. one must take a dipole solution 

cpL(X-Xo) =f(a, x-x0)/lx-x0 j 3 , 

providing directional ~nd noncentral forces between the singularities of the field. 
Integration of Eq. { 4.3) (under the condition cp (x) - 0 for I xI - oo) leads to a general solution of the 

form: 
q>(x) F. 

~ d; exp (- ), ~ F (~') d:') = ?L (x). 
0 0 

This solution can be applied with regard to cp (x) only in cases III and IV: 
~(x) 

~ d~ exp (- /.~ 2/2) = cpL (x) 

? (x) = c'f, sin (l.'''fL) 

<p (x) = l.-'\an(l.'1'cpL) 

(II), 

(III), 

(IV), 

( 4.4) 

( 4.5) 

( 4.6) 

( 4. 7) 

When the sign of A is changed, hyperbolic functions appear in Eqs. ( 4.6) and ( 4.7 ). All three of these 
solutions are extremely interesting because of the presence of the movable singular point I xI = XQ ~ A1/ 2 

for A > 0, In case II the potential diverges for I x I - XQ and is simply nonexistent for I x I < XQ. In case III 
the potential is everY'~here finite and for I xI < XQ oscillates between the values ± A - 1/ 2; the frequency of 
the oscillations becomes infinite for I xI - 0. Analagous oscillations, but of a discontinuous nature, occur 
in case IV. For A< 0 the potentials ( 4.5) and ( 4.6) diverge monotonically and relatively weakly at the or­
igin, and the potential ( 4. 7) is finite at the origin and equal to A - 1/ 2 • 

Saturation in heavy nuclei is provided by those potentials for which 

<p (ncpJ < n<p (cpL), 

this condition being satisfied by the various cases as follows: 

I- for I.> 0, II-- for ), < 0, III- for /, > 0, IV- for /. < o. 

( 4.8) 

It must be noted that the existence of the potential of a charge in a nonlinear theory does not make it 
possible to obtain from it the potential of a dipole by differentiating; this approach is based on the princi­
ple of superposition and is not admissible in a nonlinear theory. Cap11 obtained erroneous results just for 
this reason. 

5. WAVE SOLUTIONS 

Let us study the solutions of the wave equations I- IV that depend on a phase cp = cp (e) with a constant 
wave vector k11 

0 (x, t) ~~ k1h = - c.;t + kx, ( 5.1) 

( 5.2) 

For A- 0 such solutions go over into ordinary linear plane waves. For convenience in the discussion 
we introduce the amplitude cp 0 explicitly and go over everywhere to dimensionless quantities ~ = cp/cp 0 and, 
according to circumstances, X = A(cp 0/ko )2 or Ao = A.cp~. We shall carry out the study in the phase plane 
(TJ, ~),where TJ = d~ /de. 

Then the following results are obtained. 
I. For this case the equation of the phase contours is 
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( 5.3) 

a) A. > 0. There is one singular point of the type of a center, at TJ = ~ = 0; to it there corresponds the 
value C0 = 0, The process is always periodic. The solution reduces to the elliptic integral 

( 5.4) 

where 

<D =arc cos (:p/f0 ), k~ ='-2 (I +I). ( 5,5) 

b) A. < 0. There are three singular points, TJ = ~ = 0 and TJ = 0, ~ 0 = ± ?;_-1/ 2 -a center and two saddle­
points. The equation of the separatrix passing through the saddle-points ( cf. Fig. 1, A) is 

( 5.6) 

Wave processes are possible only for 

1;'2I>C>O. ( 5. 7) 

The solution is again obtained in the form of an elliptic integral 

(1- ~~2)-'i, F (CD, k) = 0 (x) +C', ( 5.8) 

where 

<D =arcsin (:p/:p0), k2 = I;2 (1-I/2). ( 5.9) 

The process is periodic only under the condition X :s 1 or <Po :s ko/t..112 • The energy density 8 is not 
positive definite; 8 < 0 in the region of aperiodic motions for large ~. 

II. The equation of the phase contours is 

'f12 - Cexp (1. 0~ 2 ) = /.~-1 . ( 5.10) 

a) A.> 0. There is a singular point of the center type, 17 = ~ = 0 (Co= - i\Q1 ), and a separatrix at Cum 
= 0, with the equation TJ2 = A.o-1• Beyond the separatrix C > 0 and the motions are aperiodic ( cf. Fig. 1, B). 

The general form of the solution (for arbitrary A.) is 

\' I' ( /' . . q) I • . ! J I; <~C\P(i.o;· -r'·o =0(x)+C'. ( 5.11) 
II 

To the separatrix there corresponds a solution of the form 

·~ (x) "~' :' i.-' '(; (x) + C'. ( 5.12) 

-t-oo<)---''-'*--+::-I::--Y-cf-----J---J-~ The asymptotic solutions for A. > 0 and C » 0 reduce to Kramp 

R /i 

FIG. 1 

'functions. 
b) A. < 0. The center remains and the separatrix disappears. 

All motions are periodic. For any sign of A. the energy density 
remains positive definite in the entire phase plane (TJ, ~) [ cf. 
Eq. (3.10) ]. 

III. The equation of the phase contours is 

( 5.13) 

a) A.> 0, There is a center at TJ = ~ = 0. All the phase contours are closed. The general solution is 

(1 + i.0 ) ', F (([), k) = -0 (x) + C', ( 5.14) 

where 

The energy density is positive definite inside a finite region which contracts to the center for c I k 1/w 
-00 

b.) A.< 0, Two new singular points appear at TJ = 0, ~ 0 = ± A.o- 112, through which there passes a separa­
trix (Clim = - 1/A.o) ( cf. Fig 2, A) 
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( 5.15) 

The energy density is always positive definite in the region of the 
oscillatory processes. 

IV. The equation of the phase contours is 

( 5.16) 

a) A > 0. There is a center at 1) = ~ = 0 ( C0 = 0). All the phase 
curves are closed. E > 0 everywhere. 

b) A < 0. In this case no points with I ~ I :::: 1/A.o exist in the plane 
(1), ~ ). Inside the allowed region (cf. Fig 2, B) all the curves are 
closed and E > 0. 

APPENDIX 

1. The conversion of the original matrix wave equation into an ordinary second-order differential equa­
tion requires the use of projection operators constructed from the reflection matrices of the Kemmer al­
gebra.12•13 The well known contractions are given by the following method. Let us consider the wave solu­
tions of the nonlinear equation 

·~ = ·~ (fi), fJ (x) = k1h. 

The wave function can be put in this case in the form 

·~ (x) == k0 (•?1 (fJ) + (~!.ki)ko) '? 2 (f!)) a, 

(x) == lt0aR4 01 (0)- (t~iJc1. 'ko) ':2 (!!)). 

In the case of the s or ps field the constant undor a is simply given by 

a= (l/2) (I- R5 ) E, 

and in the case of a veetor or pseudovector field it is 

4 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

where E is the unit undor, M1 
Using this, we find that 

I: R,, and S, is an operator specifying the spin state of the wave. 
p.=t r r 

(A.7) 

where 

are constant tensors. 
The simplest example is that of a pseudoscalar wave in a field with f3p., ... , v = I and R' = R" = 

<% ko )(I - R5 ); here, setting the diagonal and off-diagonal parts of Eq. ( A.1) separately equal to zero, 
we get the system (with~ = di/J/dO) 

~ 2 + 'i!1 + I.A<J!i = 0, {A.ll) 

·~1-'¥2=0, (A.12) 

equivalent to Schiff's equation.1 

To obtain static solutions possessing spherical symmetry, we apply the substitution 

'i! (x) = (ko•11 (x)- (~. x0 ) h (x)) a, { A.13) 
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'f+ (x) = a*R4 (ko·?l (x) + (~, x0 ) 'f2 (x)). (A.14) 

The quantity a is taken in the form ( A.5 ), or, in the case of a v or pv field, in the form (A.6) with 
S = 0, S4 = 1, and so on. 

The complete picutre of the interaction of nonlinear meson waves with a singularity in the meson field 
-a nucleon- is extremely complicated and requires special investigation. We therefore confine ourselves 
to a remark regarding the specifically nonlinear scattering of a meson by a nucleon. Let the solution of 
the nonlinear equation 

( A.15) 

be a sum of the following form [we refrain as a matter of principle from the introduction of any sort of 
interaction terms into the nonlinear theory; both the nucleon itself and the wave incident on it are already 
contained in Eq. ( A.15) ] 

•jl (x) = •jl 0 (x) + •jl' (x) ex p (-iwt), 

where 1/Jo (x) is a solution of the static equation 

(A.16) 

( A.17) 

Assuming 1/J' « lfJ 0, we get for the determination of 1/J' in the first approximation the linear equation 

~, v<f' + (ko- ~4w/c) <f' + )-J<'~'f' · .pt R"~'fo + I.R'~'fo (<ji;i R"~'f' + y+' R"~'fo) = 0. ( A.18) 

Proceeding further to choose 1/J' in the form 

f (x) =a exp (ikx) + 'f" (x) ( A.19) 

and solving the resulting equation for tj.l', one can convince oneself that tjJ·" is spherically symmetric at 
large distances, and the nonlinear scattering is almost always isotropic. 

The second-order equation for a weak meson wave colliding with a nucleon at rest can in many cases 
be reduced to the form 

( A.20) 

where n - 1 for A. - 0. 
This equation contains a curious effect of the nonlinear capture of rays falling on the source with im­

pact parameter smaller than a certain value lcr· In this process the rays wind up spirally around the 
singularity of the field. 
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