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A model of a molecular cyrstal with "semi -rigid" molecules is examined. The conditions for 
separation of intermolecular and intramolecular vibrations are investigated. By way of ex
ample a two-dimensional lattice with C4v symmetry is examined. 

BoRN'S theory of crystal lattices gives the most general solution of the problem of propagation of elas
tic waves in a crystal. In the case of complex molecular crystals, however, direct application of the the
ory leads merely to several very general deductions; hence it is natural to seek approximate models that 
would make it possible to move forward in utilizing the Born theory of crystal lattices. One such model 
for molecular cyrstals consists of separating the molecules as a whole from the lattice; in the first ap
proximation the molecules are considered as solids with six degrees of freedom. 1 Solution of the problem 
formulated in this way made it possible to investigate the propagation of orientational-translational waves 
in the crystal and to determine the conditions for separation of the translational and orientational oscilla
tions. In the following approximation the molecules are regarded as "semi-rigid" systems, that is, sys
tems for which the magnitude of the intramolecular interactions is much greater than that of the inter
molecular ones. In this case the interaction between molecules can be treated as a perturbation. 

The solution should result in free-molecule vibrations that are modulated by lattice vibrations. Aprob
lem of this kind has been examined by Davydov,2 but was solved only in the general form and primarily 
from the standpoint of energy transfer from the intramolecular vibrations to the lattice vibrations, a 
transfer leading to attenuation of the vibrations and broadening of the absorption bands. 

A more detailed solution of this problem permits an investigation of the interaction between intermo
lecular and intramolecular vibrations. 

The present study is devoted to an examination of the coupling between intermolecular and intramolec
ular vibrations and the conditions for their separation. We solve only the classical problem through the 
application of group theory. 

1. Let us examine a three-dimensional crystal containing N molecules of S atoms each. The unit 
cell contains v molecules; n is the ordinal number of the cell and nv is the index of the molecule. The 
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potential energy of the interaction of the atoms in the crystal are given by 

{ ' 1 "" ' n' ( J. '··' 2 2 o:>' + 'l;:l kry.~ ~ ~ o ~ ( 1 ) j=y L.J J, 'rn-r,)COSj, L.J n(rn-rn)·cosz.,~ 
,_. , nvn,1 v v n,1 n.1 v v v 1nv' 

niJ, n • a, x' nv, 'X, f3 

where r~v is the displace~ent vector of the ath atom of the nvth molecule, kge and A~~~£, are the coef

ficients of elastic interaction of two atoms belonging and not belonging to one and the same molecule, re-
I I 

spectively, and 'Ynaanl is the angle between the vector r~ - r~1 and the line connecting the centers of 
IJIJ IJ IJ 

gravity of both atoms in the equilibrium position. This line has an invariable orientation in space; we de
note its direction cosines relative to the coordinate axes through a, b and c with appropriate indices. 

Let us separate the displacements of the molecule as a whole; to this end we write 

(2) 

where rn is displacement of the center of gravity of the nth molecule, on is the angle of rotation of the 
IJ IJ 

nvth molecule about its instantaneous axis, l~ is the distance of the a atom from the instantaneous axis, 
IJ 

1Jgl1 is the relative displacement of atoms a and 11 in the molecule, satisfying the condition 
IJ 

and expressed in the system rigidly connected with the principal axes of the ellipsoid of inertia of the mol
ecule. Here mn a and mn a are the masses of the a and 11 atoms in the nth molecule. 

IJ IJ fJ 

For small angular oscillations 

where &n , 'Pn and 1/Jn, are the angles of rotation about the principal axes of the inertia ellipsoid. 
IJ IJ v 

In the new coordinates the total energy of the crystal is given by 

1 "" '~,, { L' = -2- ~ 1'nv<, (rn.,- r"~) + 1~., X (&nv + '1ln,, + '~n) 
nv n'Vxx' 
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T = _!__"" {M j-2 + J &2 + J . 2 + J I ,12 _L )' 7.~ (. ~~)2} 2 4.J nv nv n,,& nv nvr:pepnv nvt;J 1 nv 1 ~ !Ln., ~n" , 
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where Mnv is the mass of the molecule and Jl~~ is the reduced mass of the a and 11 atoms of the nth 

molecule. 
Writing the Lagrangian and seeking the solution in the form of plane waves 

where a is the distance between molecules belonging to one simple lattice, we obtain the determinant: 

where 

- .Hn.,<v2+ !l .. R1 ... K . .. ! 
i 

- - R2 ....... - - .. · · · I· 
............... 1. 

p ... 

: ~ .. : ~.J':·,&.<0~: ~ .· .· .- ,_v .· .· .·]. .1~ • __ • _·._·. __ 

. P . M . . . . . . . . . I - ruu2 + C . 
I· .... . 

.. .. .. .. . . .. I L .. . 

( 3) 

(4) 
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From expressions ( 3 ) and ( 5) we see that the variables do not separate along the dispersion curve; 
consequently, all types of vibrations are coupled with each other. 

The motion of absolutely rigid molecules is determined by the condition 

1{""'', =0, 
n n 

v v 

i.e., is described by the determinant in the upper left-hand corner (this case was examined earlier in 
Ref. 3 ). 

(5) 

The movement of atoms inside a fixed molecule, obtained when the motion of the molecule as a whole 
is eliminated is described by the. determinant in the lower right hand corner. We see that the intramo
lecular frequencies in the crystal are displaced by an amount on the order of the natural frequencies of 
the crystal. Each frequency of the isolated molecule splits and gives rise to v dispersion modes. 

In both intermolecular and intramolecular vibrations there is obtained a determinant of the 3svth order 
in which the nondiagonal terms between the blocks contain linear functions of the coefficients A, i.e., 
quantities of the next lower order compared with terms pertaining to the intramolecular oscillations. So
lution of the determinant in general form is impossible. However, the presence of different orders of the 
coefficients indicates than an approximate solution is possible in principle. 

The most direct, although cumbersome, method consists of reducing the secular equation to a polyno
mial form, for example, by the method of A. N. Krylov, and then finding the roots by Newton's method of 
successive approximations. 

The presence of symmetry in the crystal makes it possible to utilize the method of group theory to 
quasi-linearize the determinant that corresponds to the limiting frequencies by introducing geometrically 
symmetrical coordinates. The blocks in the determinant thus obtained correspond to the coordinates of 
the non-separating oscillations. The frequencies associated with the determinant blocks can also be found 
by Newton's method. 

Separation of the lattice and intermolecular vibrations is possible only for the limiting frequencies in 
special cases of symmetry. It will be seen from the expression for the potential energy that the intramo-

lecular displacement vectors 17~/1 enter into the vector rna with different signs relative to the coordinates 
J) J) 

of the displacement of the center of gravity of the molecules for each atomic pair a and {3. The same 
thing applies to the rotation vectors ln x 8n. This means that these vectors are characterized by identi
cal symmetry relative to the coordinates of displacement of the center of gravity and that therefore the 
separation of the translational and intermolecular oscillations for the limiting frequencies occurs for the 
same types of symmetry as the separation of the translational and orientational oscillations. The condi
tions for separation of the last have been analyzed in Refs. 1 and 3. 

2. By way of illustrative example let us examine a two-dimensional square lattice containing two di
atomic molecules per unit cell (see figure). For it to be possible to determine the limiting frequencies 
corresponding not only to the wave vector T = 0 but also to the vector T = 7!" I a, let us double the number 
of molecules in the cell. 

According to expression (2 ), the coorqinates of the atoms will be 

x;k-l = X2k-1 + 1/2 (-!)' /-&2h-1; X~h = X2k + 1/2 (-It 'f/2k; 

y;k-1 = Y2k-1 + 1/2(-l)"'f/2k-1; y;" = Y2k - 1/2(-1)"' L%2" (6) 

(a= 1, 2 and k = 1, 2 ). We shall neglect second-order quantities in the projections of the displacements. 
Let us agree to limit our examination to interaction with nearest neighbors: then each molecule will 
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interact only with 8 neighbors and consequently each atom with 14 neighboring atoms. Accordingly, the 
total energy of the unit cell, corresponding to the limiting frequencies, can be written in the form 

U = f [(YI- Y2)- (xi·- x2)J2 + f [(Y2- Ya)- (x2- x~)l 2 + f [(Ya- Y4) -+- (xa- X4)]2 + f [(Y4- YI)- (x4- xi)l2 

+ 1/4f [('1/I + -~2) 2 t (·112 + 'Y)a)2 + ('1/3 + 7]4) 2 + ('114 + '1/!) 2] + w [(x4- X2)2 + (Ya- Y1l2 + 1/4 ('1/4 + "12) 2 + I/4 ("'a+ "nJ2l 

+ w[(xl- x3)2 + ('1/4- 'Y)z)2] + IJ2k (-rl~ +"I~+ "I;+ 'II~) +A (&i + -B~ + .s-; +&!)+I (&I&a + &4&2) 

-f- C (&J-l)2 + -32&~ -f- &a-3-4 + &4&1) + d ((&I- &2) ('1/J + "12) + (&2- .l}:l) ('fl2 + 'f/3) + (&~- &4) ('fl3 -f- '/14) + (iJ-4- &I) ('1)4 -f- -~1) 

( 7) 

f = u \ + 2).'), c = 2/2),', 

where f and c are elastic coefficients characterizing, respectively, the translational and orientational 
interaction of the molecule in the x = y direction, w and w are the translational interactions of the mol
ecule in the directions x and y, respectively, with sequential and parallel arrange of the molecule, y is 
v the orientational interaction of the molecules arranged parallel. 

_... A is the orientational interaction of a molecule oscillating in the 
field of the neighboring fixed molecules, k is the elastic coef
ficient characterizing the intramolecular interaction, and 
d(A. + ~)£/2 and d* = A.'l are' elastic coefficients characterizing 
the coupling between the intramolecular and intermolecular vibra
tions. 

Introducing the small parameter X = hv A. /hv k = A. x2 /kT/2, we 
see that the energy ( 7 ) contains both first order terms A. x2 /2 "'X 
and terms of order one and a half, d.'tTj "' x312• 

In the given case, in view of the symmetry of the lattice there 
is no coupling between the translational and orientational oscilla
tions for the limiting frequencies and, consequently, no coupling 

~-------------r between the translational and intramolecular vibrations. 
The analytic form of the frequencies and the selection rules have been determined by the aid of group 

theory. The given lattice pertains to the symmetry group C4v. The unit cell comprises 16 degrees of free
dom. The normal vibrations of the lattice are characterized by 16 frequencies, belonging to 5 types of os
cillation; 8 frequencies are degenerate in pairs. 

The frequencies corresponding to the limiting oscillations of equivalent molecules with phases 0 and 1r 

and the geometrically symmetrical coordinates corresponding thereto are given by 

cui (0) = 2 (k + w + 2f)/m, si = 'YJI + 'f/2 +"'a+ "~•; c:u2 (0) = 2 (k + w)fm, S2 = ('1/. + 'f/2)- ('Y/a- '11!); 

__ 2(k+ f) 32(d-d*j2) Sg = 'lj2 -'Y)I }· 
C:Ug IO (--) - • - ' 

· m (t + k) J- (2A- y) mj2 ' s10 = 'Y)a- 'Yj4 

c:u1a (~t) = (3f + 2w)jm, S13 = (Ya- Yr)- (x4- X2); (u14 (~t) = (3f + iw)jm, s14 = (Y2- Y4) + (xa- xi); 

c:ui5 (~t) = (2f + 2w)jm, si5 = (y3- y1) + (x4- x2); c.>Is (~t) = (f + 2w)jm, s16 = (Y4- Y:J) + (x3 --xi). 

The frequencies 1, 2, 4, 13, 14, 15 and 16 are active in the Raman spectrum; frequencies 5, 6, 9, 10, 
11 and 12 are active in the infrared spectrum. Coupling of the intramolecular vibrations with the orien
tational ones is realized in the oscillations corresponding to the frequencies 9 & 10 and 11 & 12. Thus we 
see that our examination of a two-dimensional lattice has fully confirmed the deductions made in our analy
sis of the general case .. We plan to carry out the calculation of a three-dimensional lattice for a real crys
tal. 
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In conclusion the writer desires to express her sincere thanks to Prof. A. I. Ansel' m for useful diB
cussions and constant interest in the work. 
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The angular distributions of photofission fragments from uranium at x-ray energies of 9.4, 
12 and 26.5 Mev were determined using a 30 Mev synchrotron. The anisotropy was found to 
increase sharply with decreasing x-ray energy. The ratios of the anisotropic to the isotropic 
fission yields at the above energies 0,55 ± 0,09, 0.13 ± 0.05, and 0.05 ± 0.04 respectively. 

THE angular distributions of photofission fragments from uranium were determined with nuclear emul
sions. The source of the x-rays was the 30 Mev synchrotron of the Physics Institute of the Academy of 
Sciences. 

Ilford D-1 plates of 100 and 2001-f. thickness were impregnated with a saturated solution of uranyl ace
tate and were placed in the x-ray beam at a distance of 1 m from the synchrotron target. The method of 
Belovitskii and Romanova1 of impregnation and final development of the emulsions was utilized. By a 
careful timing of the different steps in the processing of the emulsions we succeeded in obtaining clearly 
legible tracks of the fission fragments while the a-tracks were scarcely noticeable. The plates were ir

TABLE I. Angular distribution of photofission 
fragments from u238 

Distribution of tracks 
M aximum x-ray Number of 

(per steradian) 
nergy, Emax tracks 

I I Mev 
0 _;l(,o 30-60° 60-90° 

180-150° 1S0-120'"' 120-D0° 

e 

9.4 3001 q=o.n3 1. 35=f0. 04 1 . 3tl=f0. 04 
12 20.53 1 4=0.04 1 .09=f0. 04 1. 'lG=fO. 04 
26.5 2507 1+0.04 1.10=f0. 04 1 . 06=f0. 04 

radiated at the following three synchrotron energies: 
9.4, 12, and 26.5 Mev. 

The scanning was performed with MBI-2 micro
scopes with a 60 x objective and 5 x ocular. In scan
ning, all tracks with dip angles greater than 15° 
were rejected. For the retained tracks the angles 
between the direction of motion of the fragments and 
the x-ray beam were measured. Since the origin of 
the tracks could not be determined the angles {}- and 
1r -{}-were indistinguishable and the obtained angu
lar distribution is actually [ I ( ") + I ( 1r - ") ] • 

In order to determine the fraction of fissions due to background neutrons some of the uranium-impreg
nated plates were placed at the time of the irradiation outside of the x-ray beam. The fissions in these 
plates could be due to the background neutrons which are approximately uniformly distributed around the 
synchrotron, and to scattered y-rays. The scanningoftheseplates revealed that for all x-ray energies the 


