
LETTERS TO THE EDITOR 1287 

Investigations of the Equation of State 
by Mechanical Measurements 

lA. B. ZEL 'DOVICH 
P. N. Lebedev Institute of Physics, 

Academy of Sciences, U.S.S.R. 

(Submitted to JETP editor March 6, 1957) 

J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1577-1578 
(June, 1957) 

RECENT YEARS have seen successful investi­
gations of the properties of matter at high pres­

sures obtained by explosive means. By this pro­
cedure pressures of the order of a million atmos­
pheres are readily attained. However, a distinctive 
feature of the explosive method is the short duration 
of the high pressure. Because of this the measure­
ments are limited to determining the velocity of the 
shock wave (D), the rate of displacement (u) of the 

material compressed by the shock wave, or the den­
sity attained in compression (p = 1/v, where v is 
the specific volume). These quantities are related 
by the expression Dp0 = (D - u)p. In addition to the 
measurements pertaining to the material compressed 
by the shock wave, it is also feasible to make cer­
tain measurements in the course of the subsequent 
adiabatic expansion of the material. 

A common characteristic of investigations carried 
out by the explosive procedure is determination of 
mechanical quantities- the velocities, density, 
pressure (in the shock wave p = p0 + p0Du ), and en­
ergy of the material. In the shock wave E = E0 

+ (v0 - v)(p + p0)/2. The thermal processes and 
equalizations of temperature do not have time to at­
tain equilibrium, hence conventional temperature 
measurements prove impossible. Optical measure­
ment of the temperature of the shock wave is pos­
sible only in transparent materials, primarily in 
gases and then only in a temperature range bounded 
both from below (absence of radiation and transpar­
ency of the compressed gas) and from above (forma­
tion of a heated layer in front of the shock wave 1). 

Thus in the typical case of investigation of the 
equation of state by the explosive method, experi­
ments give only information on the energy, pressure 
and density. By varying the initial state of the ma­
terial, in particular, by compressing the material in 
the form of a finely dispersed powder with a reduced 
initial density by means of the shock wave, one can 
obtain the different adiabatic curves for shock com­
pression and fill in an entire region in the p, v 

plane. 

In the case of adiabatic (isenotropic) expansion 
the following relationships hold: dp = pc du; dp 
= c2 dp and dE = pp-2 dp, where c is the velocity of 

sound. By measuring the velocity and pressure at­
tained during expansion one can also find E(p, v) 
along an isentrope. Finally in de.tonation waves 
and in the expansion of the products of the explo­
sion itself measurements of the rates of detonation 
and displacement makes it possible to find E(p, v). 
Thus in principle one can find the function of two 
variables p(E, v) or E(p, v) at high pressures. 

In the present note we examine the problem of how, 
knowing E(p, v), one can obtain the full thermody­
namic characteristic of the material, i.e., find the 
temperature T and entropy S at the high pressures 
that can be attained only by the explosive method. 

Knowing E(p, v) one can plot the lines of con­
stant entropy. From 

we obtain for the isentrope (dS = 0): 

(dp I dv) Is=- (Ev + p) I EP 

(the subscripts at E denote partial derivatives). 

(1) 

(2) 

However, the absolute value of the entropy can­
not be determined from mechanical measurements 
alone, i.e., from the function E(p, v). The entropy 
can be determined only in the case when the meas­

urements of the mechanical quantities in the shock 
wave and in the process of expansion can be linked 
with the region of low density where calculation or 
calorimetric measurement of the entropy is possible. 
Obviously if a constant-entropy line in the p, v 
plane is known and the value of the entropy at the 
lower end of this line is known, we will have S for 
the entire line. It can readily be shown that this 
also pertains to temperature: if the temperature at 
one end of an adiabatic curve is known, then when 
E(p, v) is known, we can calculate the temperature 
over the entire adiabatic curve. 

Let us imagine that we have two neighboring adi­
abatic lines p/v) and p2(v) drawn in the p, v plane 
and that the energy E is known over the entire 

length of the adiabatic lines. If in the region of 
low pressures and low densities the temperature T 
= T0 is known at some point of v = v0 [or more ac­
curately, let T0 = (T1 + T2)/2], then the entropy dif­
ference on the two adiabatic curves is given by 

(3) 
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In this case the temperature between the two neigh­
boring adiabatic curves at a high pressure and a cor­
responding density Oow specific volume v) is given 

by 

T =' E (PI (v), v]- E [p2 (v), v] 
S1-S2 

is everywhere proportional to the given value T0 at 
the end of the adiabatic line. 

In the present note we do not examine the ques-
tion of the accuracy with which it is necessary to 
make the initial measurements of D and u, as well 
as of the velocities attained in adiabatic expansion, 
in order to be able to carry out the calculations for 
E(p, v), lthe adiabatic lines, and finally the temper-

=To E [PI (v), v]- E IP2 (v), v] . 
E [PI (vo), vo]- E IP2 (vo), Vol (4) atures aecording to formulas (4) or (9). 

Consequently, if mechanical measurements giving 

E(p, v) have been made, all the thermodynamic quan­
tities can be determined along the adiabatic curves 
extended to where they join the region in which 

these quantities (T and S) can be determined by cal­
culation or experimentally. 

Let us carry out the formal operations substanti­
ating this conclusion and leading to more conveni­
ent expressions for the temperature. Determining 
dS from (1), we then obtain 

(5) 

Equation (5) is a partial differential equation for 
the absolute temperature; after elementary opera­
tions we obtain 

(Ev + p) aT I dp-EP()T I av = T. (6) 

The characteristics of this equation are lines, whose 

differential equation is 

(7) 

i.e., adiabatic lines [compare with Eq. (2)]. Along 
these lines Eq. (6) gives 

dT I dv is = - T I E P, (8) 

whence 

where the integrals are taken along the adiabatic 

line. Just as in Eq. (4), the temperature in Eq. (9) 
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1 THE ANGULAR DISTRIBUTION of {3-radiation 
•from oriented nuclei has been investigated theo­

retically by Cox and De-Groot 1 and the writer. 2 

However, it was assumed in these investigations 
that parity is conserved in {3-decay. Recently it has 
been found that conservation of parity is violated in 
f3-decay.:~. 4 In view of this, the results obtained in 
the aforementioned investigations 1• 2 are valid only 
for aligned nuclei, but are not valid for polarized 
nuclei. 

In the general case the distribution of the {3-parti­
cles in energy and in angle should be 

W (E, .S) = a0 + a1 f1P1 (cos-&)+···+ a,J np n (cos&), 

(l) 


