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Le:el shifts in mesonic atoms due to vacuum polarization produced by the nuclear elec­
tnc held are computed, The recursion relations between the meson wave functions are 
used to derive equations in closed form for the first six level shifts. The shifts for the first 
three levels of heavy mesonic atoms are computed with allowance for the finite volume of 
the nucleus. 

1. INTRODUCTION 

TO STUDY THE PROPERTIES of mesonic atoms 
it is important to know the position of the en­

ergy levels of the meson. In light mesonic atoms 
(up to Z "' 20), the energy level is determined prin­
cipally by nonrelativistic formulas of the Keppler 
problem of hydrogen-like atoms, in which the elec­
tron mass is replaced by a reduced meson mass. 1 

The most significant corrections for these formulas 
are the relativistic corrections, the level shifts due 
to the vacuum polarization by the electric field of 
the nucleus, 2 the shift due to the distribution of the 
positive charge over the volume of the nucleus, and 
in 1T -mesoatoms also the shift due to nuclear inter­
action between the meson and the nucleons of the 
nucleus. 3 In heavy mesonic atoms the effect of the 

finite volume of the nucleus on the position of the 
levels is so considerable that it can no longer be 
considered a small perturbation. For example, 
when the volume of the nucleus is taken into ac­
count, the energy of the IS muon in wmeso-lead 
turns out to have half the value given by the equa­
tion for point-like nuclei. 1 In the case of heavy 
mesonic atoms it therefore becomes necessary to 
solve from the very beginning for the motion of the 
meson in the electric field of a nucleus occupying 

a finite volume. As to the remaining significant 
corrections to the energy levels of heavy mesonic 
atoms, to which one must add also the influence of 
the quadrupole electric moment of the nucleus 4 •5 

and the polarization (deformation) of the nucleus by 

the meson, 6• 7 these do not exceed 1- 2% of the 
level energy. 

While in the hydrogen atom the Lamb shift of the 
electron eDtergy levels is due fundamentally to the 
correction for the field electromagnetic mass, and 
approximately l/25 th of the shift is caused by 
vacuum polarization, the situation in mesonic atoms 
is different. The vacuum polarization of electrons 
and positrons changes the electrostatic potential of 
the nucleus at a distance on the order of the Comp­
ton wavelength of the electron (rv w-u em), regard­

less of what particle, electron or meson, moves 
around the nucleus. Since the Bohr radius of the 
orbit is inversely proportional to the mass of the 
particle, the radii of the meson orbits are 200-300 
times smaller than the radii of the electron orbits 
and their dimensions are on the order of w-u -10-12 

em. As a result, the meson spends a greater part of 
its time in a region where the electrostatic poten­
tial of the nucleus is changed by the influence of 
the vacuum polarization, which leads to a consider­
able level shift. At the same time, the correction 
for the eleetromagnetic intrinsic mass, which is in­
versely proportional to the square of the mass of 
the moving particle, will be considerably smaller 
in mesonic atoms than the Lamb shift for electrons, 
as a consequence of the greater mass of the meson. 

The energy level shift due to vacuum polariza­
tion is a substantial correction for all mesonic 
atoms ('"" 0.1-2% of the energy of the level). The 

influence of vacuum polarization is noticeable at 
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small Z also for levels with greater orbital mo­
menta l, where the effect of the volume of the nu­
cleus is relatively small. For example, the shift 
of the 3Ds;, level of p-meso-uranium due to vacuum 

polarization is approximately lO kev, and that due 
to the finite volume of the nucleus is only approxi­
mately 5 kev. This is clearly seen in Fig. l for 
mesonic atoms with small Z. 
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FIG. l. Dependence of the splitting of the second level in light p-mesonic atoms on 
Z, caused by various effects: !-relativistic splitting without allowance for the volume 
of the nucleus and vacuum polarization, 2- with allowance for the volume of the nu­
cleus, 3- with additional allowance for vacuum polarization. The zero level represen'ts 
the nonrelativistic level energy without allowance for the volume of the nucleus. 

It is the purpose of this work to calculate the meson level shift due to vacuum polarization in the mes­
onic atom. For the first six levels, equations were derived for the shift in closed form. The effect of the 
nuclear volume is accounted for in the calculation of the level shift in heavy mesonic atoms. 

2. CALCULATION OF THE LEVEL SHIFTS 

To calculate the level shift due to vacuum polarization in mesonic atoms, let us take the Feynman form 
of the Fourier component of the effective polarization potential induced by an external electric field with 
a Fourier component of potential cp0 (k) (see, for example, Ref. 8). 

_ a [ 4k~- 2k 2 ( _ V 4k~ + k2 sinh-1 ~) __!__] 
'f' (k) - 7 3k2 I 1 k I 2k0 + 9 'flo (k), (l) 

where k0 = mc/1i (m is the electron mass), a.. = e2/1ic is the fine-structure constant. For a concentrated 
point nucleus with a Coulomb potential 

V (r) = eZ / r (2) 

the Fourier component of the potential will be 

(3) 

In the coordinate representation we have for the polarization potential 

4a r [ 4k2 - 2k2 ( v 4k2 + k 2 -1 k ) 1 l . 
'f' (r) = -r- ~ 03k2 1- ~ sinh 2ko + 9 'flo (k) k sm kr dl~. (4) 

0 

The energy level shift will be determined by perturbation theory, averaging the polarization potential over 
the meson wave functions. 
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00 

D.Enz =-e~f~nz(r,.&,rp)f 2 cp(r)d-;:=-e~ R~z(r)rp(r)r2 dr= 
0 

{5) 

00 
1 • 

I nl (k) = k ~ r R~1 (r) sin kr dr. (6) 

0 

Using the notation 

x = kj2k0 , s = nk0ajZ = nm/rx[LZ._ y = kr (7) 

(a= 1i2/f1e2 is the Bohr radius of the meson orbit, fl. the reduced meson mass, and m the principal quantum 
number) expressions (5) and (6) become 

00 

b.Er.z = -- ! rxe (2k0)3 ~I nl (sx) cp0 (2k0x) [0- 2x2) (x- V 1 + x2 sinh-1x)+ ~1} d:, (8) 
0 

00 

I nl (sx) = k~ ~ R~z (/t:x y) y sin ydy. (9) 
() 

For a point concentrated nucleus, using the relation sinh -t x = ln (x + y'l + x2 ) and Eq. (3), we can rewrite 
expression (8) for the level shift as 

(10) 

(11) 

Taking for R,11 (r) the expression for the radial portions of the wave functions of the Keppler problem of 
hydrogen-like atoms (see, for example, Ref. 9), we obtain, using the notation of (7) 

2 1(k)3 J !J} 
R1o= 2 sx exp l-ex ' 

R~o = J:.. (!!_)3[4- 41L + (1L)2
) exp{- JL}. 

8 sx e:x sx . e:x ' 

2 1 ( k 3( !J )2 { !J} R21= ::!4 sx) 0.: exp -ex , 
(12) 

R~ = _!,_ ( .!:.)3 [36- 72 !!__ + 48 (!!__)2 - 12 (. y ) 3 + (JLVj exp {- !!__} , 
30 72 \e:x sx sx .sx sx) sx 

2 - 1 ( k )3 [ 16 8 Jj_ ( y )2] ( Jf__ 2 {- jl__} R31 - 144 ex - e:x + ex e:x) exp u ' 

2 1 (k)'3(y)4 { y} R32= no e:x e:x exp --ex . 

Noting that 
exp {- yjzx} = 2 (sx/k)3Ri0 , (13) 
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we obtain an expression for the squares of the wave functions of the higher state in terms of the square of 

the wave function of the 15 state and of its derivatives with respect to the parameter 8: 

(14) 

If we now introduce into (11) the integrals (9), into 
which, in turn, we substitute expressions (14), and 
if we then interchange the order of integration with 

respect to x and y and the differentiation with re­
spect to 8, we arrive, in the final analysis, to an 
expression for Kn z( 8) in terms of K10( 8) and the de­
rivatives of K10(8) with respect to 8. Furthermore, 
the coefficients of the derivatives will coincide 
with the coefficients of the corresponding deriva­
tives in (14). Thus, having determined the depend­
ence of the shift of the 15 level on 8, we can ob­
tain the shift of the remaining level by differentiat­
ing with respect to 8, thus facilitatin.g the computa­
tions considerably. 

Then 

t/e 

0 
-io 

FIG. 2. 

00 

According to (9), we have for the 15 state 

K10(s) = ! ~ { (1- 2x2 ) [x-Yl + X2 ln (x + 111 + X2)] + x;} x3(1!:2x2) 2 • 

0 

To calculate this integral let us consider the integral 

K ('c)= _ _!I_\ (1- 2z2) [z- Vi+ z2Jn(z+V1 + z2)] + 1;3 (z + ili)3 
o,~ n:e4 ) (z+ ili)3 (z + ije)z (z- i/e)z dz, 

c 

(15) 

(16) 

(17) 

taken in the complex plane along the contour C, shown in Fig. 2, and so chosen that the branch point z = i 
of the intergrand is located outside the contour. Let us assume that 8 < 1, and then the intergrand has a 
second-order pole inside the contour at the point z = i/c;. Choosing the single-valued branch of the inter­
grand, we obtain with the aid of the residue theorem 

1. K(' )- 2 4 ~00 (1-2x2)[x-V1+x2 Jn(x--j-V1-fx2)]--j- 1 / 3x3 d +" 11. 1ti ~ (1-2z2)lf1-Lz2 d 1m o e - ----- x m ' z 
o~ o ' n:E4 xa (x2 + E-2)2 o- o e4 • (z + ili)3 (z2 + e 2)2 

0 L 

___ . ~. {-4 __ (1- 2z2 ) [z- V.i + z2 Jn (z+Vi + z")] + 1 / 3(z +ili)3 -} 
~ ltm 2"t res rre4 . ' 0 )3 ( . . . r ( . )2 

0_,_ O (Z T I, 2-1- lJE " Z -l/E z~d< 

(18) 
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It was taken into account here that the integral along an arc of radius R tends to 0 as R--> oo. The first in­
tegral equals 2K10( 8). The integration path L of the second integral consists of the negative part of the 
real axis from -«> to 0 and the segment of the imaginary axis from 0 to i. This integral is calculated in a 
straightforward, although cumbersome, manner. As a result we obtain 

2K10 (e:)- (3 + 4:::2) r; + V rrt =- --- 4s2 + 1.r1 2 -2- e2- 4e4 . 2 [ 11 2 -- e2- 4e4 (In 1 + VE1 - e2 + -_ .. 2i)] . 
E 1- E2 E 3 f - E (19) 

Hence 

1o(e: =- ---4::: + -8 + 283 rr+ --==-In . K ) 1 [ 11 2 ( 3 ) 2 - e2- 4e4 1 + V 1 - g2 ] 

E 3 2 V1-e2 e (20) 

If we now use Eq. (14), in which we substitute Knl and the derivatives K10 in place of R!z and the deriva­
tives R~0 with respect to 8, we obtain 

where 

K2o(s)= ~ {-136 -14e:2 +7C(~ e:+7sa) +! (1 -- 82f1+! (1-e:2t2 

+ [~3 + 4e:2- 14e:4 - ! (1-~2f2] <I> (8)}, 

K21 (e:)= ~ {- ~4 - 10e:2 +'It ( ~ E + 5e:3 ) + 1 (1- e:2fl+ ! (1-e:2f2 

[ 11 3 ~) } + 4 + 2e:2- 1084 - (1- s2fl--;;; (1 _ :::2f2 J <I> (e:) , 

K ( ) - 1 { 73 92 2 + - (' 3 + 46 3) 2 ( 1 2)-1 + 77 ( 1 2)-2 
30 E - e - g - 3 E " 2 8 3 E + - E 12 - 8 

- ~5 ( 1 - 82t3 + 3: (I - e:2f4 + [ 136 + 3; e:2 - 932 e;4 - 152 ( 1 - s2fl 

_ ~ (1 _ 82t2 + 5: (I_ 82ta- S: (1-s2p] <!> (e:)}, 

K3I(e:)=+{- 6;- 8~s2 +7t(-~ e:+;o e:s)+-}(1-s2f! 

+ ~ ( 1 _ 82)-2 _ ~ ( 1 _ 82)-3 + ~ ( 1 _ 82p + [~ + 2!_ 8 2 _ 80_ 84 
24 12 8 6 3 3 

- ~~ (1- s2t1- 1; (1- e:2f2 + 3: (1- e:2t3- 3: (1- e:2f4] <I> (s)}' 

. 1 { 55 56 2 ( 3 28 3) + 19 ( 1 2)-1 Ka2(e:)=e--9-3 8 +7t2 8 +3 8 10 -e: 

+ ~~~ (1 _ e:t2 + 1~ (1 _ e:2t3 + + (1 _ e:2)-4 + r 263 + _1: e:2 

56 37 - 5 - 1 7 - J } - 3- e:4- 24 ( 1 - e:2) 1 - 8 ( 1 - e:2) 2 - "8 (1 - e:2)-3- 8 ( 1-e:2) 4 <P ( e:) ' 

<D (e:) 1 In 1 + V~ 
Vi -E2 E 

(8 < 1). 

(21) 

(22) 

These equations can be continued analytically to include the case when 8 > 1. In this case (22) it becomes 
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(23) 

We finally determine the vacuum polarization shift of the first six energy levels of the meson in mesonic 
atoms with Eqs. (10) and (20)- (23). One need merely take into account that according to (7) 8 has differ­

ent values for states with different principal quantum numbers n. Figs. 3 and 4 show the Z-dependence of 
the level shifts for rr and f1. mesonic atoms, calculated with the aid of these equations. 
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FIG. 3. Dependence of the value of the level shift of 
rr-mesonic atoms on Z, caused by vacuum polarization. 
The mass of the pion is 272.5 me. 

FIG. 4. Dependence of the value of the level shift of 
{-L-mesonic atoms on Z, resulting from vacuum polariza­
tion: 1-without allowance for the volume of the nucleus, 
2- with allowance for the volume of the nucleus. 

3. ALLOWANCE FOR THE VOLUME OF THE NUCLEUS 

Taking account of the volume distribution of the charge of the nucleus reduces considerably the effect 

of vacuum polarization in high-Z mesonic atoms (see Refs. lO and 11). The fact that the nucleus is not 
concentrated in a point leads, on one hand, to a change in the potential of the electrostatic field of the nu­

cleus, and on the other hand to a change in the meson wave functions. If we take the cause of vacuum po­

larization to be a nucleus with a charge uniformly distributed within a sphere of radius R0 , there will be an 
oscillator potential inside the nucleus and a Coulomb potential on the outside 

V (r) = eZ [~ - __!_ (!_)2] ( R ) 
Ro 2 2 Ro r < 0 ' 

V(r)=eljr (r>R0). 

(24) 

The Fourier component of such a potential will be 

q; 0 (k) = 2:;k2 R~k2 eiz::o- cos kRo). 
0 

(25) 
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To acc.ount for the change in the meson wave functions, caused by the finite nuclear dimensions, let us 

turn to the variational method. Let us take for the states 15, 25, and 2P respectively orthonormalized 
trial wave funetions 

( Z \ 3 lz { Z } R10 (r)=2\qa) exp -q----ar, 

- ( z )'J, 
2V3s sa [ 1 z ] { z } R2o (r) = V 1- -3 - (s +- q) r exp - s- r , 

52_ sq + q2 a a 

(26) 

2 ( Z )'lz { Z } R2 1 (r) = v:f t a rexp --tar 

with variational parameters q, s, and t. With the aid of the radial portion of the Schroedinger equation with 
potential (24) 

(27) 

we obtain the following expression for the energy 

Substituting the trial functions (26) into (28) leads to expressions for the energy in terms of the variational 
parameters 

i2 ( z )2 [ 3 3 ( 3 6 3 ) ] 
£10 =- 2-;;_-- a q - q + pq - p3q3 + pq- + p2q2 +- p3q3 exp {- 2pq} ' 

12(2)2{3 s2 s [ 3s2+15q2 
£20 = - 2(.L ·a p - 3 + s2- sq + q2 - 2s3- 2p3s3, (29) 

Here p = R0 Z/a. The values of the parameters q, s and t are found, as usual, from the minimum-energy 

condition. The transcendental equations thus obtained can be solved numerically. The table gives val­
ues for the variational parameters and for the energy levels of several IL-mesonic atoms (it was assumed 
in the calculation that the mass of aIL-meson is 270m, and the nuclear radius R0 = 1.2 x 10-13 AV. em). 

Using the functions (26) we obtain by means of formula (9) express-ions for lnl with allowance for the 
volume of the nucleus 

1 - (e:sx)2 

!1+ (e:sx)2J4}' 
(30) 
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where 

sq=k0ajqZ, Es=k0ajsZ, St=k0ajtZ. 

Variational parameters Energy, Mev 
.... Point nucleus Variational method = Q,) 

I I I 
s q s t 
~ £10 £20' £21 Eto £20 En 
[.il 

5 .zs 
lg 0.9642 0.4918 0.5000 0.550 0.137 0,536 0.1:16 0.137 

Zn~2 0.8376 0.4558 0.4994 2.530 0.632 2,202 0.590 0.632 

Sb~~~ 0.6685 0.3938 0.4926 7.317 1.829 5.183 1,525 1.817 
Pb2os 

82 0.5003 0.3197 0.5480 18,923 4.731 9.986 3.316 4,511 

The expressions for the level shifts are then ob­
tained by inserting (25) and (30) into (I8). The 
values of the level shifts, obtained therefrom by 
numerical integration with allowance for the volume 
of the nucleus, are shown dotted in Fig. 4. By way 
of an example let us indicate that for 11-meso-lead 
the shift in the IS level, due to polarization of vac­
uum, is 2I7 kev without allowance for the volume 
of the nucleus, and nearly 53 kev with allowance 
for the volume of the nucleus; for the 2S and '2P 
levels the shifts are 37 and 33 kev respectively 
without allowance for the volume of the nucleus, 
and I7 and 28 kev with allowance for the nucleus. 

To check how good the approximate solution ob­
tained by the variational method is, we obtained for 
Eq. (27), by numerical integration by the Runge­
Kutta method, the eigenvalue of the energy and the 
wave function of the IS state of 11-meso-lead, for 
the same values of the meson mass and nuclear ra­
dius. The eigenvalue of the energy of the lS level 
was found to be l0.4I2 Mev, i.e., approximately 4% 
greater than the value obtained by the variational 
method. Fig. 5 shows that the variational wave 
function is a better approximation than the wave 
function of the Keppler problem. 

It must be noted that in all the above calcula­
tions of the mesonic atom level shifts due to vac­
uum polarization, we took into consideration only 
terms of the order o.Z. As shown in Ref. I2, ac­
counting for terms of higher orders gives for a point 
nucleus, even in the case of 11-meso-uranium, a 
shift which amounts to less than 0.02% of the en­
ergy level. It is evident that allowance for the vol­
ume of the nucleus can only reduce this figure. 

I 

0 11 g !Op 

FIG. 5. Radial probability density of finding a meson 
in 11-meso-lead in state 15, determined by various meth~ 
ods: 1- without accounting for the volume of the nu­
cleus [wave function of the Keppler problem R(p) = 2e-PJ, 
2- with allowance for the volume of the nucleus [varia­
tional wave function R(p) = 2q%e -qP, q = 0.5003], 3-
with allowance for the volume of the nucleus (numerical 
solution); p = rZ/ a. 

The influence of vacuum polarization on the posi­
tion of the energy levels in mesonic atoms was ac­
tually discovered experimentally. In many works on 

the determination of the masses of TT- and 11-mesons 
using spectra of mesonic atoms it became neces­
sary, to obtain mass values that are in agreement 
with data of other experiments to compare theory 
with experiment, to take into account the vacuum 
polarization level shift in the mesonic atoms.13 - 14 

Vacuum polarization is also accounted for in inves-
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tigations of the interaction between the 1T -meson in 
the mesonic atom with the nucleons of the nucleus.15 

In conclusion, the author expresses his gratitude 
to Professor D. D. lvanenko for reviewing the manu­
script. 
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The internal structure of the front of strong shock watves is investigated, taking account 
of radiation. Approximate solutions of the equations of the mode are found. Profiles of 
the hydrodynamic quantities, density and radiation flux, are constructed. 

ONE OF THE METHODS of study of shock waves 
in gases (in particular, in air) is photometric 

measurement of the brightness of the wave front. In 
a certain amplitude interval, the shock wave front 
radiates like a black body. Consequently, it is 

possible to determine the temperature behind the 
wave front directly, by photometry. Combined with 
the measurement of another parameter of the wave, 
for example, its velocity, this allows us to make 
some suppositions concerning the thermodynamic 
functions of the gas being studied. The question 
arises, up to what amplitudes does the visible tem­
perature coincide with the temperature behind the 
shock wave, and what is its dependence on the 
actual temperature behind the front when the latter 
reaches tens and hundreds of thousands of degrees, 
since at the present time such powerful shock waves 

are becoming the subject of experimental investiga-

tion. 1 This question leads, first of all, to the prob­
lem of the internal structure of a shock wave front, 
taking account of radiation. 

This problem was investigated by Prokof'ev, 2 who 
obtained •correct integrals of the approximate equa­
tions in the separate regions in which the variables 
are continuous. However, as a result of an errone­
ous analysis of the equations, he joined these solu­
tions in an incorrect way, which led to the continu­
ity of the hydrodynamic variables in the wave. Pro­
kof' ev' s e:rror was pointed out by Zel' dovich, 3 who 

gave a correct qualitative analysis of the approxi­
mate equations of the mode, and proved that there 
is a discontinuity of the hydrodynamic variables in 
the shock wave. 

In the present article, approXImate solutions are 
found of the equations of the mode, encompassing a 
broad interval of shock wave amplitudes, as well as 


