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Bremsstrahlung of an ultra-relativistic particle of spin one-half in an arbitrary field with
central symmetry is considered. A relation between the bremsstrahlung cross section and
elastic scattering cross section is obtained for ultra-rel ativistic particles.

1 AS IS KNOWN, the bremsstrahlung in the colli-
®sion of an ultra-relativistic charged particle with
a nucleus occurs principally at large distances from
the nucleus. The cross section for the process is
therefore determined by the assymptotic form of the
wave function of the particle in the nuclear field. 1-3
The assymptotic form of the particle wave functions
may be found by describing the scattering effect of
the nucleus by the scattering matrix. In the ultra-
relativistic case, it is possible to establish a gen-
eral relationship between bremsstrahlung and elas-
tic scattering cross sections. This relationship does
not depend on the character of the interaction be-
tween the particles and the scattering nuclear field.
Let us first of all consider the elastic scattering
of fast particles with spin % in a field with central
symmetry. The free motion of a spin-% particle of
momentum p is described by the spinor plane wave

l/’o = upeipr’

where u, is the unit amplitude of the spinor wave.
Y (1) =
'p 4m

(v 5 —1E— ’”) nZRE2IT—el gy pie gp

The scattering of particles in an external central
field will be characterized by the scattering matrix
S. The wave function describing the stationary
states of the particles in the external field will then
obviously be determined by the product of the ma-
trix S by ¥,

Ut = St (D

At large distances from the center of the field, the
wave function (1) will be of the form of a sum of a
plane wave and an outgoing spherical wave. To
verify this, let us use the Huygens principle as for-
mulated by Akhiezer* for spinor waves. This prin-
ciple establishes a relationship between the value
of the wave function at a certain point and the value
of the wave function on a closed surface surround-
ing this point. Let us choose for this surface an
infinite plane perpendicular to the momentum of the
impinging particle and passing through the center of
the external field

Ir—op]|

(2)

; 1 J [ — .
= upe’!’f—z;rg(y T nE—m) n explinlr—el) {1 — S} u eiredp.

[r—op|

Far from the center of the field (r + ), this function has the form
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O (r) — upe’™ + f (%) u, e

(3)
) = upgu,,g {1 — e @} exp {— i (p.— ) p} dp,

where p, = pr/r; the eigenvalues of the scattering operator S are expressed through the phase shifts n (p).
(It is assumed that the phase shift 7 is identical for [ + % and ! — %3, [ = pp). The multiplier diverging
wave f(9,)is the elastic-scattering amplitude.

Averaging the square of the modulus of the elastic-scattering amplitude over the initial polarizations,
and summing it over the final polarizations, we obtain the following expression for the elastic scattering
cross section of spin-% particles

9 & 2
do, — (1 — v?sint 5) | S (1 — i@} J, (psinep) odp| pido.. @)
0

This expression differs from the expression. for elastic scattering cross section of particles without spin
by an additional factor [1 — »* sin? (9./2)].|(We use a system of units where ¢ =% =1.)

2. Let us now examine the scattering of a spin-’z particle with emission of a y-quantum. Assuming the
interaction between the charge and the electromagnetic field of the y-quantum to be small we obtain the
following expression for the transition matrix element

ie
U, =——\yer ee—‘k"d)(H dr, (5)
i f Vo S Ta
where @, k and e are the frequency, momentum and polarization of the emitted y-quantum, and p’ is the
particle momentum after emission of the y-quantum. At large distances from the center, the wave function

of the particle in the final state l//p has the form of a sum of a plane wave and a converging spherical
wave

— in’r 1 ’ {—lp’ll'—-—-pl} *
Lp{,, )(r)zu,,,ep +HS(T ar ———14E’ m)qfn &p Ty {1—S"}Yu, dp. 6)

In computing the matrix element (5), let us note that, in the ultra-relativistic case (E, E' > m), the
spherical parts of the wave functions t/lp and ¢l practlcally do not overlap. Notmg also that, in the

ultra-relativistic case, the main role is played by the small angles between k, p’ and p, we obtain the
matrix element in the form

27 i rQ’ | . A.AI’_ 7 n’ .A'— )A !
e = = N 0= s a ¥ 0tp i, (L= B, )

where f=p —k, f' =p' +k and the two-dimentional angular vectors & and 3 are determined by the
relations

=(n)n-+p¥, k=(kn)n+ k¥

The differential cross section for the emission of a y-quantum by the particle is determined from the
formula

doy = (27 / V)| Ui s 23 (E — E' — @) dp’ dk / (2%)*, @

where v is the velocity of the incident particle.
Averaging the cross section over the initial particle polarizations and summing it over the final particle
polarizations and over polarizations of the emitted y-quantum, we obtain
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do, iifp &{1 2’”(9)}J0(jk8-—l—p’n‘}’\p)pdpQ%SpF(m,—;;—i)%)dodo’,
Femr G —mR) o« —mi A —myvg ®)
F= { p2— 2 P — } (lp— ) { pE—1 + gD } (lp — m)

Calculating the trace the usual way, we finally obtain the following expression for the differential
cross section for emission of a y-quantum by an ultra-relativistic spin-’ particle in an external central

field

p’ ?) 21 2 g
do, = S| m\ (L= gy nixtyloede [ {5 + 1) o
0

@ x4y )\ de
+ S (T ')}"‘d"dy’

where
X=(p/m)dand y=(p"/m)(d —I).

In the ultra-relativistic case (£ >> m), the elastic scattering will also principally occur at small angles;
the cross section (4) can therefore be presented in the form

do, = o, (1) du, o, (u) = jm 8{1 OV T (tmus) udp [
0
where
u=(p/m)¥.. (10)

Comparing (9) and (10), one can establish the following general relationship between the elastic scat-
tering cross section o, and bremsstrahlung from charged ultra-relativistic spin-/% particles:

_ x y @, o (x+yr | do 11
dex—se (X 1Y )i (T + 1) T op s ma s ) o X

A similar relation holds for spin-zero particlest

X ¥y \2do
dol = et (1x+y) 15 (i + i) o dxdy. (12)
Integrating (11) over the angle x and y, we obtain the spectral distribution of the radiation

oo

dor (o) = L2 | o 20) T gV TH ) —1 + 2
9m

1n (g + V1+q2)} qd q,(13)

Y gVI+ ¢ pp’ V1 |

where g =% |x + y|, and the minimum value ¢, is determined by the conservation law: q,, = mw/4EE'.
3. As an illustration, let us apply the obtained formulas to the case of scattering of fast protons by ab-
sorbing nuclei.® In this case, the scattering matrix can be written in the form

* The relationship between dos, and the elastic scattering amplitude for spin zero particles was also obtained in

Ref. 3.
It should be noted that, in the case of a proton, a big role should be played by the radiation due to the anomalous

magnetic moment; this effect has not been taken into account, however.



1226 A. G. SITENKO

s 0, <R
Tlen®, o> R,
where R is the nuclear radius, 7(p) = nlnpp(pp > 1) and n = Ze*E/4 mp.
The elastic scattering cross section is equal to

S Jy (pR sin 87) 1" &

1

. 9 &\|RJ; (pR sin 9) 2in R
de. (1 vesin 2) sin 9 + sin &

*do. (14)

In the limiting case n < 1

272 3 2 s
do, = (1 — v?sin? z—) {———R Jls(i,:f;m i 4:: ———'JO (anzl; 3)} 0 (15)
The first term in the braces describes the differential scattering of particles by an absolutely black
nucleus. The second term describes the scattering of charged particles in the Coulomb field of a nucleus
of finite dimensions.
The cross section for emission of a y-quantum during scattering of a proton by an absorbing nucleus is,
taking into account the Coulomb interaction, equal to

Rh(mIX+yIR), 2in { sine)=n®)] 2
Ix+y] +|x+y|§f T mix+yle)de

X y \2 »? x+y)? do
AFw+ 39t mrarm i) o o
Setting R = 0 in (16) and noting that

e2p’
doy = 4m3p

(o]

Sezi M@= (m|x 4 y]|p)do = (2p)*" ) (m|x 4y |)*"+, (16)

0

we obtain the Bethe-Heitler formula for bremsstrahlung from a proton in the Coulomb field of a nucleus

B-H __mwet o ! x y Py 0 (x+y?P )do
dcy =’—11:~'T7_m2|x+yl4{(1+x2+1+y2) +Wm}7d)(dy a7

Setting n = 0 in (16), we obtain the Akhiezer formula* for the diffraction radiation of y-quanta by protons

A
doy, =

er p’ R (m|x+y| R){/ X

Ll : x+ypr do (18)
4 p x+y|* }dedy'

y_yL et
{Fet ) tarar e e

Equation (16) describes bremsstrahlung due to Coulomb interaction as well as to the presence of diffrac-
tion. In the limiting case n < 1, this cross section is equal to

doo — ezp'{th(le-{—y | R) ﬂjg(m|x+YIR)}
= Imyp [x+yi® m T Xty

(19)
X y \2 o (x+y)? } do
Argm+ ) Tor ars e ey
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