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The possibility of generalizing the Rarita-Schwinger method of setting up the Lagrangian 
for particles with large spins (s >%)is examined, It is shown that the result obtained by 
Moldauer and Case is valid only for particles of spin%. 

I N A WORK ON THE THEORY of particles with 
high half-integral spin, Rarita and Schwinger1 

have shown in spinor-tensor form a method for con
structing the Lagrangian without additional quanti
ties, and have given the Lagrangian for spin-% par
ticles in explicit form. 

In a recently published work, Moldauer and Case 2 

give a Lagrangian which, according to these authors, 
gives the correct equations for particles with arbi
trary half-integral spin s = n + ~. where n = l, 2, 
3, .... On the basis of equations which follow from 
the variation of their Lagrangian including interac
tions with the electromagnetic field, conclusions 
are reached with regard to the magnetic moment of 
particles with spin s = n + ~ and the quadrupole mo
ment of particles with spin % and%. 

We shall show in this note that the Lagrangian 
density given by Eq. (l. 7) of Moldauer and Case, 2 

as well as their field equations (1.9) and subsidiary 
conditions (1.10) which include interactions with the 
electromagnetic field are correct only for particles 
with spin% and may not be extended to particles 
with higher spins. Therefore their results for mag
netic and quadrupole moments can be considered 
valid only for particles with spin* %. 

The Lagrangian function as given by Moldauer and 
Case is 

L = 'Y,t,, ... vn [(1~'-a~'- + m) a""+ A (l"a" + 1"a) 

+ ( ~ A2 +A+ ; ) lxlpap1;>.. 
(l) 

where 

a 1'- = a I ax!J. (p. = 1' 2, 3, 4 ); xl = X, 

x2 = y, x3 = z, x, =it; n = c = 1; 

'l'v1 ,v2 ... vn is an nth rank spin tensor symmetric with 
respect to all its indices (vi= l, 2, 3, 4); 

where r is the number of times the index 4 occurs in 
111 • 112 , ••• , 11 n; A is a real parameter which may take 
on arbitrary values other than - ~. 

For free particles, L as given by Eq. (l) should 
lead to the Dirac equation 

(2) 

with the subsidiary conditions 

1 w - o a'¥ = o. A A.v2 •.• vn-' A Av2···vn (3) 

We have previously 3 used such a Lagrangian to des
cribe particles with spin 3~. In the same article we have 
shown the relation between the equations obtained 
by variation of the Lagrangian of Eq. (l) with n = 1, 
and the other known forms of writing the equations 
for spin-3~ particles, namely the Fierz-Pauli-Gupta 
~quations, 4 •5 the Petras e<J?ations, 6 and the 
Gel'fand-Iaglom equations; in addition, we discuss 
the question of allowable linear transformations of 
the spin-% equations. It is found that the arbitrari
ness in the coefficient A is related to the arbitrari
ness in normalizing the metric in the spin-~ sub
space. The transformation 

*At the same time, of course, part of the Moldauer and 
Case2 article which deals with constructing the equations 
for the independent components of free-particle wave func
tions with spin n + Y. in Hamiltonian form is undoubtedly 
correct, since it is based on the free-particle equations 
established in the work of Rarita and Schwinger.1 

where 
(4) 

k=(A'-A)/2(2A + 1) (5) 

1203 



1204 E. E. FRADKIN 

leads to the transition from one value of A to an· 
other* A'. In the special case A=-',) the 
Lagrangian density of Eq. (l) is that given by Rarita 
and Schwinger •1 

In order to derive the equations for particles with 
spin greater than %, when n ~ 2, it is important to 
note that the symmetry of 'I' v, v2 ••• 1.1n with respect to 
all its tensor indices leads to the fact that the vari-

where we have written 

B=%A2 +A+ 1/ 2 , C=-(3A2 +3A+l). 
(7) 

Let us first note that the form of (6) depends 
strongly on the value of n, so that it is impossible 
to obtain an equation of a single form for arbitrary 
n, as was done by Moldauer and Case. Secondly, for 
n). 2, i.e., for free particles with spin s > %, it is 
not only impos!'!ible to obtain the subsidiary condi
tions (3) with tb.e coefficients given by Eq. (7), but 
in general, with any values of A, B, and C. 

ations 8 wt, '£12 ••• vn are not independent. 
It is particularly important to account for the sym

metry of 'I'~ v2 ••• vn with respect to the index x when 
performing the variation of L. When the variation of 
Eq. (1) is correctly performed, it leads to the fol
lowing field equations for particles with spin 
s = n + ~: 

(6) 

Detailed investigation shows that so many alge
braic conditions must be fulfilled by A, B, and C 
that for values of n higher than 1 the number of 
equations is greater than the number of unknowns, 
and the equations become inconsistent. The mistake 
made by Mloldauer and Case 2 is that they did not 
take account of symmetry in varying L. 

Let us c;onsider the question of the applicability 
of the Rarita-Schwinger method to particles with 
spin %. We may attempt to extend L as given by 
Eq. (1). The most general Lagrangian density with 
no additional quantities for particles with spin%, 
which leads to first-order equations is of the form 

L = 'P'~v {(rfl-afJ. + m) al<A + 2al (1/\ + rAaJ + 2a2lxlpaplA + 2aamrxrJ 'P'AV 

+ 2a4 ('P'~><aA lv'P'Av + 'P':Vaxrv'P'AJ + 'P'~x (aalpap + aGm) 'FAA. 
(8) 

When 

2a1 = A, 2a2 = B, 2a3 = C, a4 = a5 = a6 = 0 
(9) 

the function of Eq. (8) becomes the Lagrangian den
sity of Eq. (1) for n = 2. 

To obtain the subsidiary conditions (3) for free 
particles it becomes necessary, as a consequence 
of the field equations which follow from the 
Lagrangian density of Eq. (8), to operate with Yx 
and ax and sum over x and then to operate with Bv-;p 

*This makes the results for the quadrupole moment of 
spin-% particles as obtained by Moldauer and Case seem 
even stranger, as it depends on the unspecified parameter 
A, and thus on the choice of the representation. 

avYx· and avax and sum over X and v. We then ob
tain two sets of equations. The first two operations 
give two differential equations for lA 'P' AV• aA 'f\v. 
'P' ""' aeaA 'f\p and aPIA 'YAP· The ·three final opera
tions lead to equations of the form 

Aaa'P'n + Assap1A'P'AP = 0, 

A43'P'AA + A44apaA 'YAP+ A45ap1A'P'AP = o, 
Asa'Yt.~. + A54aA,'YAp -f-- Assap1A'P'Ap = O, 

(10) 

where the A ik (with i, k = 1, 2, 3, 4, 5) are certain 
expressions containing differential operators and 
depending on the coefficients a 1 - llt5 as parameters. 
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The condition that under which the system (10) 
has the only required vanishing solution is that the 
operator determinant of the set of equations become 
a nonzero constant. This requirement leads to three 
algebraic equations for the coefficients lZt - a6 and 
to the condition (m =f, 0) 

(1 + 6a3 ) (1 + 2a3 + 4a6) =I= 0. (ll) 

Inserting 

into the equations obtained with the aid of the first 
two operations, we obtain 

(12) 

From the condition that the system (12) has only a 
vanishing solution, we obtain two other algebraic 
equations for the coefficients a1,. ~. and ~· Solving 
the five equations obtained, we obtain the coeffi
cients a 2 , a 3, a 4 , as, and a 6 as functions of the 
arbitrary parameter ~ :. 

az = 1/4 (5ai + 2a1 + 1); 

a3 =- 1/ 8 (15ai + 10a1 + 3); 

a4 = - 1/ 8 (5ai + 6a1 + 1); (13) 

a5 = a6 = 1/ 16 (15af + 10a1 - 1). 

Condition (ll), however, is not fulfilled for any 
value of a1 •. The determinant of (10) vanishes iden
tically and therefore there exists no set of values 
for the coefficients au. ••• , a6 for which both sets 
(10) and (l:l) ha:ve simultaneously only vanishing so-

lutions, i.e., the subsidiary conditions (3) cannot 
follow from the L function of Eq. (8).* 

We can thus conclude that the Rarita-Schwinger 
me~hod does not give positive results for spin-5~ 
particles. One may suppose that this is related to 
the fact that in analogy with the spin-% case, the 
Lagrangian function for spin-% particles should 
have two arbitrary parameter related to the choice 
of normalization in the subsidiary subspaces with 
spin ~ and spin%. It was .iust this number of arbi
trary coefficients which appeared in the Lagrangian 
function for spin-% farticles as constructed previ
ously by the author using a method involving sub
sidiary quantities of lower rank. 

In conclusion, the author expresses his deep gra
titude to S. V. lzmailov for valuable discussion. 
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*If we turn to L of Eq. ( 1) (n = 2), then setting a 4 = as 
= a 6 = 0 in agreement with Eq. (9) we obtain two incom
patible equations for a 1 = A/2. 


