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cipally to the fact that Klein's analysis (which 
underestimates the role of states with L ;::: 2) 

agrees badly with the experimental data on n-p 
scattering in the angular region close to 180°, 

The author is thankful to V. P. Ddzelepov, lu. M. 
Kazarinov, and B. M. Golovin for profitable discus­

sion and interest in the work. 
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A study is made of the magnetic properties of bulk superconductors for which the param­
eter x. of the Ginzburg-Landau theory is greater than 1/V'i (superconductors of the second 
group). The results explain some of the experimental data on the behavior of superconduc­
tive alloys in a magnetic field. 

T HE AUTHOR 1 has already noted that the quasi­
microscopic Ginzburg-Landau theory 2 of super­

conductivity leads to the conclusion that there ex­
ist two groups of superconductors. For the first of 
these groups, the parameter x. entering into the 
Ginzburg-Landau theory is less than 1/v'2, and for 
the second group it is greater than l/y'2. 

This parameter x. determines to a great extent 
the surface energy at the normal- superconducting 
interface. It has already been mentioned, 2 in par­

ticular, that the calculated surface energy of a su .. 
perconductor with x. > 1/y'2 is negative. Thus 
superconductors of the second group should have 
properties very different from those of the first 
group. 

For pure metal, x. is found to be small. For in­
stance for mereury, x. = 0.16. In view of this, 

Ginzburg and Landau considered only the case in 
which x. « 1/y'2. 

It has been shown by Zavaritskii, 3 however, that 
the properties of pure metal thin films condensed at 
liquid-helitum temperatures are not described by 
such a theory. Zavaritskii and the present author 
have therefore suggested that such films correspond 
to x. > 1/v'2, and that superconductors can thus be 
divided into two groups. The critical field for su­

perconductors of the second group has already been 
calculated 1 as a function of the film thickness. The 
agreement obtained with Zavaritskii's experimental 
data was not bad. 

In the present work, a more detailed investiga­
tion of the magnetic properties of bulk superconduc­
tors of the second group (a cylinder in a longitudi­
nal field) is undertaken. The results obtained show 
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that rt > l/y'2 for a large number of superconduct­
ing alloys whose magnetic properties had not pre­
viously been well understood.* 

I. TRANSITION TO THE NORMAL STATE 

It was shown by Ginzburg and Landau 2 that if 
rt > l/y'2, the superconductivity is maintained at 
fields greater than Hem at which equilibrium could 
exist between the normal and superconducting 
states. At fields higher than Hem, a state with 
'I' = 0 is unstable, and superconducting sections 
with 'I' f. 0 may arise. It was shown 1 that this in­
stability continues to some value H el, which for a 
bulk superconductor is rtyf2H em. At this value of 
the field the superconductor undergoes transition to 
the normal state by means of a second-order phase 
transition. In this section we shall investigate the 
properties of a superconductor in the neighborhood 
of the transition point, that is 

x- HoI Y'fHcm ~, x. (l) 

The Ginzburg-Landau equations (in units previ­
ously used by the author, 2 and to be used hence­
forth), t can be written 

UJ +A )2'¥ = '¥ -'Y I 'Y 12, (2) 

-curl curl A= I'¥ 12 A+ 2~ ('P'*V'¥-'P'V'¥*). (3) 

We shall assume that the superconductor fills all 
space, and that the external field !10 is directed 
along the z axis. Let the potential A be directed 
along the y axis. 

Close to the transition point I 'I' 12 « l, so that 
in the first approximation we may neglect the influ­
ence of 'I' on the field. We then obtain 

H = const = H0 , A= H0x. (4) 

We note that the point x = 0 may be located any­
where in space. Let us now go on to Eq. (2). In­
serting (4) into the equation for Ill, neglecting the 
term I 'I' 12 'I' and considering 'I' to be a function of x 

only in the first approximation, we obtain the oscil­
lator type of equation 

d2'Y 1 dx2 - x 2 ( 1 - H~x2 ) '¥ (x) = 0, (5) 

*The suggestion that rt may be greater than l/y'2 for 
alloys was first made by L. D. Landau. 

t We note that in these units Hem = l/y'2. 

as found previously. 2 This equation has solutions 
when H0 = rt/(2n + 1). In particular! the largest 
value H0 = rt corresponds to 

(6) 

In addition to such solutions, Eq. (2) is satisfied 
by the function 

(7) 

Since the point x = 0 has no special properties, the 
conditions will be exactly the same at all points of 
space, and it is natural to pick 'I' in the form 

00 

'¥= " C eihny ·~ (x) .::::.J n ~_n ' 
n=-oo 

(8) 

[ x2 ( kn )2J ·~n (x) = exp - -2 \X- -;;:2·· 

with arbitrary coefficients k and Cn. 
This form of 'I' is a solution of the linear equa­

tion, and refers in facts to H0 = x. In order to find 
a solution for H0 < ~t, let us take into account the 
nonlinear terms in the equations. We find the ap­
proximation of interest by inserting A from Eq. (4) 
with H0 = ~t, and 'I' from Eq. (8) into Eq. (3). This 
leads to 

~ CnC~ei(n-m)hy [xk- (n ~;) k] ~n (x) ·~m (x), 
n,m 

It can be shown easily that 

H =dAjdx=H0 -I'YI2 12x; 

A= Hox- ~~I 'Y\ 2 dx, 

(9) 

(10) 

(11) 

is a solution of this equation, where 'I' is given by 
Eq. (8), and H 0 is some still undetermined constant. 
It will be shown later that this constant is equal to 
the external field strength. 

Let us now consider Eq. (2) in the following ap­
proximation. We insert into it Eq. (11), and take 
account of the term 'PI 'I' 12 • We shall assume in this 
approximation that the function is still of the form 
of Eq. (8), but we shall add small terms l/J~ ll(x) to 
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all the en 1/Jn (x). The equations for these small terms are of the form 

( kn ) 2 (1) 1 d2~~;> (l) 2 ( ( nk') ) x- xx 'fn - xz dx2 - 'fn = x- Ho) x X- x2 en'o/n (x + 
(12) 

X 

+ ~ C pe~Cn-p+m {[X- :2 ( n- p 2 m) J 'fn-p-r-m (x) ~ 'V p (x') 'fm (x') dx' - ~ p (x) 'hn (x) ~n-p+m (x)} . 
p,m 

Thus I/J~1 ) is a solution of an inhomogeneous equation. But in order for such a solution to exist, it is 
necessary that the right side of the equation be orthogonal to the solution of the corresponding homogene­
ous equation. The solution of the homogeneous equation is just the function t/Jn (x). Performing the neces­
sary integration, we obtain the following condition: 

(13) 

Let us multiply this equation by e~ and sum over n. It is easily venfied that we then obtain 

x x Ho J 'fl')2 + ( 2~2 - l) )'Y \4-= 0, (14) 

where 'Pis the function of Eq. (8). Thus H0 enters into 'Pin the form of a coefficient. 

The quantity H0 can be expressed in terms of the magnetic induction. According to (10) and (14), we 
have 

B = H = H 0 - I '¥) 2 / 2x = H 0 - (x- H 0) / (2x2 - 1) ~. (15) 

where 

(16) 

is independent of H 0 • 

Let us now ealculate the free energy. According to Ginzburg and Landau, 2 the free energy is 

FsH-Fso = \ dV{_!_·_ I o/)2 +I '_¥14 + fl2 + (- iv'Y -A'Y\(i\7'¥~-A'Y*)}. (17) 
H~m/ 47t J 2 2 x ) x 

If we now make use of (2) and (3) and neglect the surface integral, which is of no importance to us, we 
obtain 

FsH- Fso = \ (H2- I '_¥14 + _!_) dV. 
H~l~ ) 2 2 

(18) 

The free energy per unit volume is proportional to 
the average of the integrand. Denoting this aver­
age by F 1 and writing it in terms of B, we obtain 

1 2 (x -- B)2 
F 1 = ~: + B - 1 + (2x2-1)3 · (19) 

For a given B this quantity will be minimum when 
(3 has its lowest value. 

We note that (13) can be written in the form 

a~ 1 ac~ = o, (13') 

becoming equivalent to the condition that (3 is a 
minimum. It is seen from (16) that (3 cannot be less 
than unity. 

The condition that 'P be periodic in x is the fol­
lowing simple recursion relation for the en: 
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(20) 

The general analysis of the problem of choosing 
the coefficients is extremely complicated, but there 

is no reason to suppose that the actual value of N 
is a very large number. It would seem that the low­
est energy corresponds to the simplest case* N = l. 
In this case f3 is given by 

The minimum value of f3 is Qbtained when k = x$, 

and is equal to 

~ = (~e-nn•y = &~ (0, 1) = 1.18. (21) 
I! 

Then IJI is 

(22) 

It can be shown from the properties of the function 
{} 3 that rotation by 90° multiplies IJI by the phase 
factor ei ~xy, but does not change it otherwise. 

*In addition to this case, which will be seen later to 
lead to a square lattice," we considered the example 
of a triangular lattice. The side of the triangle is 

(1/x) V 8n / 3"V3. By numerical integration, however, 
we were able to show that this lattice corre.sponds to a 
larger value of {3, namely {3 = 1.32 (see also the next 
section). 

Thus \'l'\ 2 has the symmetry of a square lattice. 
When x = y = (1/ x)y' 1T /2, the function 1J1 vanishes. 
According to (10), ll attains its maximum value H0 

at these points. 
We shall now show that H0 is equal to the field 

strength. As is well known, the field strength is 
4rrJF /JB (in the usual units). This leads to are­
lation between H and B which is identical with Eq. 
(15). In order to perform the comparison with ex­
periment (this will be done in Sec. 3) more conven­
iently, the latter can be rewritten in terms of the 
function M(/10), 

- 4·;:M I (Hc 2 - f/ 0) = 1/1.18 (2x2 - 1), (23) 

where M and H can be taken in the usual units. We 
note that the magnetic moment is proportional to 

the first power of ll c2 - H0 • 

Equation (23) is the macroscopic characteriza­
tion of the behavior of a bulk sample in an external 

field. As for the microscopic structure of the field 
penetration, collecting the results described above 
we obtain the following picture. In a plane perpen­
dicular to the field direction, the structure is per­
iodic with the symmetry of a square lattice. The 
field varies between its maximum value H0 and its 
minimum value given by 

Hmin = Ho- (Hc2- Ho) V2 I (2x2 - 1). (24) 

When the applied field strength l/0 is increased, the 
field between the maxima increases up to values 
equal to H = H0 = x. 

The field and current distribution is shown in the 
figure. The lines correspond to \'l'\ 2 = const (nor­
malized to \'l'\ 2max = 1) or equivalently, to H 
= const. These are then the streamlines (their di­

rections being given by the arrow). 

2. THE BEGINNING OF FIELD PENETRATION 

INTO A SUPERCONDUCTOR 

In the preceding section we concluded that in 
the neighborhood of the transition point to the nor­
mal state, superconductors of the second group are 
in a special state which is neither normal nor super­
conducting, and differs significantly from the inter­
mediate state which may arise in noncy lindrical 
bulk samples. Let us call this the mixed state. 
One naturally wonders how this state changes as 
the field is decreased, and where and how the tran­
sition to superconductivity occurs. 

If we direct our attention to the experimental 
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B (!f0 ) curves for alloys, 4 we see that this transi­
tion can be both a first and a second order phase 
transition. It would seem (see Sec. 3) that the 
first order phase transition occurs when x. is not 
very large, whereas the second order transition oc­
curs when x. ).> l. It is extremely difficult to ex­
plain this on theoretical grounds, since this would 
require solving Eqs. (2) and (3) without any simpli­
fying assumptiions. 

Let us consider only the simplest case of a sec­
ond order phase transition, which would seem, as 
has already been mentioned, to take place when x. 
is not too small. 

Let us start with a determination of the transition 
point. It is natural to assume that when the field 
first begins to penetrate, the structure of this pene­
tration is again of the lattice type, although with a 
very large period. At the lattice points the field 
will have its maximum value, and will practically 
vanish between them. Thus the field penetration 
pattern is that of separated filaments. This pat­
tern reminds one of the distribution of superfluid­
ity in helium II by the creation of vortex filaments, 
as proposed by Onsager 5 and Feynman. 6 The sim­
ilarity is even greater when one analyzes the be­
havior of the '11 function in the neighborhood of 
these filaments in greater detail. When one con­
siders the situation at fields close to 11 c 2 , one 
sees easily that in the neighborhood of those points 
where \jl v~nishes and the field is maximum, the 
phase of the \jl function is* e, where e is the polar 
angle, and thus changes by 217 in going once around 
such a point. It is natural to suppose that the 
phase behaves in the same way in the neighborhood 
of separate filaments when the separation between 
them is large. As will be seen later, the 'I' func­
tion vanishes also in the center of a filament. This 
behavior of the 'I' function, in particular of its 
phase, has been suggested by Feynman in applica­
tion to vortices in helium II. 

When the filaments are sufficiently separated, 
they can be considered independent of each other, 
and each filament can be treated separately. In 
this case, the problem has cylindrical symmetry. 
Let us introduce the modulus and phase of the \]1 

function 

'F = fei"' (25) 

* In the neighborhood of such a point with coordinates 
(x,., y1 ), \jl is proportional to (x - x1 ) + i (y - y1 ). 

and consider the vector A directed perpendicular to 
the radius vector. We introduce the scalar quantity 
Q, which is equal to the absolute value of the vec­
tor A- \lcp/x.. Equations (2) and (3) then become 

-- _1 _ _ 11,_ (r _dj_) + Q2f = f- f3' (26) 
x2r dr dr 

d r· 1 d 1 dr -r dr (rQ); = Qf2. (27) 

The field H is given by 

1 d 
H = ---d (rQ). r r 

(28) 

The statement of the problem requires that f-> 1, 
11-. 0, Q ·-> 0 as r-> oo. Further, we have assumed 
that for a separate filament 'f = e. But this leads 

to \le'P = d'f/rae = 1/r. In other words, Q--> l/xr 
as r-> 0. According to the theory of Onsager and 
Feynman the superfluid velocity v s in helium II 
diminishes in the same way, with increasing dis­
tance from the center of the filament. 

In addition, it is of course necessary to require 
that f be everywhere bounded. These conditions 
uniquely determine the solution of (26) and (27). In 
general, however, this solution can be obtained 
only by numerical integration, and this must be per­
formed separately for each value of x.. 

When x. » 1, the solution is considerably simpli­
fied. We note for this purpose that the distance 
over which Q should have a large variation is r"' l. 
As for f, itt varies to a 1arge extent at distances 
r '"'- l/ x.. In view of this, one may assume that f 
has already attained the value f = 1 in Eq. (26), 

from which we immediately obtain 

Q = K1 (r) I x, (29) 

where K1 is the Hankel function of imaginary argu­
ment. Further, we note that Q = 1/x.r when r « l. 
Inserting this into the equation for f we obtain 

-~- [-!__ _I£ (r _dj_ \ - - 1 t] = f3 - f · 
x2 r dr dr) r 2 

(30) 

At distances r » 1/x., the solution of this equation 
is { 2 = 1- 1/x.2r 2, and when r « 1/x., the solution 
is f = Cr, where C is a constant which can be ob­
tained by numerical solution of (30). 

Let us now calculate 8, the free energy per unit 
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length of a filament. To do this we must evaluate 
the integral 

00 

8 = 27t ~ ( H2 + 1 
2 

14 ) rdr 
0 

(X) (31) 

= " ~ [ (1 - f4) r - f2 :, (r2Q2) l dr. 
0 

If we note that the integrand decays exponentially 
when r » 1, and assume that ln x. » 1, it is easily 
seen that the important contribution to the integral 
will be from the interval 1/ x. << r « 1, and we then 
obtain 

8 = (2r: I x.2) ln x.. 

Numerical integration of (30) and (31) makes it pos­
sible to obtain a correction to ln x., so that we fi­
nally obtain 

8=(27tlx.2)(lnx.+0.081). (32) 

In order that the formation of filaments be ener­
getically possible, the field strength ll 0 must be 
such that F 1 - 'llf0B be negative. If the filament 
density, i.e., the number of filaments crossing a 
unit area, be denoted by n, we have 

F 1 = ns, B = H = n ~ H dS = n ~ A dl. (33) 

In view of the fact that the contour of integration 
extends to r = oo, and that at these large distances 
Q = 0, we conclude that A = 'V r:p/ x., which means 
that its absolute value is 1/ x.r. Thus 

B = 2-r:nlx.. (34) 

It follows from this that the filaments start being 
formed when the field strength H 0 attains the value 

Hcl = 8X I 47t. (35) 

This formula is valid for arbitrary x. on the assump­
tion that the phase transition is of sec·ond order. 
When x. » l, we obtain 

Hc1 = (1 I 2x) (In x + 0.08). (36) 

It is interesting to note that at the center of the 
filament the field is about twice H c 1 in the given 
case. Indeed, according to Eq. (27) we have 

00 

H(O)= ~Qf2dr=(lnx-0,18)/x. (37) 
0 

From (35) it is seen that lJ c 1 is independent of n, 

and that an arbitrary number of filaments may be 
formed in this approximation for H 0 > H c 1" In order 
to find the function n(H0), and therefore B(H0), we 
must take account of the interaction between the 
filaments. 

This is easily done if x. » l. Indeed, in this 
case the region in which f differs from unity (r 
'"'-' 1/ x.) is small compared with the distances at 
which the interaction between the filaments takes 
place (r '"'-' 1 ). In view of this, the filament cen­
ters will play the role of singularities in the solu­
tion, and their detailed structure will not be of im­
portance. It is not difficult to see that the equa­
tion for the field together with the conditions at 
the centers of the filaments can be written in the 
form 

m 

where the rm are the coordinates of the centers of 
the filaments. The solution of this equation is 

H=+~Ko(lr-rm!). (39) 
m 

The energy can be written in the form 

(40) 

where the rm are calculated from one of the filament 

centers. The term corresponding to rm = 0 should 
be replaced by Eq. (32). The quantity n and the 
periodicity of the lattice, which enter into (40), can 
be expressed in terms of the magnetic induction B 
by Eq. (34). For a square lattice we obtain 

It is, however, possible that the lattice is actu­
ally not a square one or that its symmetry changes 
as the field is varied. Therefore the problem 
should be dealt with more carefully. The most 



1180 A. A. ABRIKOSOV 

probable structure which one can assume instead 
of the square one is the triangular one. For such a 
lattice one easily obtains 

xB_ B " K("/4r:(f2+m2+1m)\) 
F 1 = 2r: 8 + -x- L.J 0 v V' I • 

l'+m'+lm21 3 xB - ~~ 

By comparing the asymptotic form of this expression 
for small B with asymptotic form of (41), 

x (H0 - Hc1) = + ~ [2K0 (xz,m) + Xz,mKl (xz,m)J, 
xz,m+O 

where Xz,m = V 4rr (/ 2 + m2 + lm) I V3xB 

for x (H 0 - Hcl) < 0.0394, 

Xz,m = V2rr (!2 + m2) I xB-
for x (H0 - Hc1) > 0.0394. 

(45)' 

xB 
FILl.= -2Jt s 

B • /~ (Y3xs)''• ( • / --;m-) + 6 x Y 2 \ -~ exp - V V3 xB ' 

We note that (aB/dll0)r is always positive, which 
indicates that the situation discussed is stable. 7 

For very large values of x. Eq. (35) can be used 

to find !let· To do this one must solve (26) and 
(43) (27) numerically, after which 8 is calculated from 

- 'I ( ;-2 ) (31). On the other hand, finding B(l/0 ) in this case ~lr:rxB)' Jt . V 2 \ -z,:r exp - Jt xB , requires solvmg a separate and very complex prob-
xB B 

F10 = 2-s+ 4-r: X 

one sees clearly that for sufficiently small B there 
should be a transition to the triangular modification. 
The value of ll0 at the transition point is deter­
mined by setting the free energy for a given field 
strength equal to F,- 2ll0B, and is 

H~ = Hn + 0.0394/x. (44) 

This transition is clearly a first order phase tran­
sition. The induction undergoes a jump from B1 

= 0.286/x. to B2 = 0.294/x.. At fields greater than 
ll:, the square lattice is more favorable, which jus­
tifies to some degree the assumption made in the 
previous section. 

We note that the transition takes place in the im­
mediate neighborhood of !1 c 1 , and that the discon­
tinuity in the induction is so small (about 3%) that 
it would be extremely difficult to observe it on a 
B(H0 ) curve. 

It is not difficult to see that when lJ = li cu the 
B(H0 ) curve has a vertical tangent. Indeed, when 
fl "'Hc 1 , the h'0 -dependence of B is determined pri-

';1, marily by the term H0 'V exp[-(4rr/y'3x.B) >],and 
dH0 /dB--> 0 as B--> 0. In the other limiting case, 
when x.B » 1, the various terms of the sum of Eq. 
(41) have arguments which lie close to each other, 
so that the sum can be replaced by an integral. 
This gives Fl "'B 2 , and H0 "'B. Thus as H0 is in­
creased, the curve asymptotically approaches the 
straight line B = H 0 • This goes on until the dis­
tance between the filaments becomes of the order of 
1/x., i.e., until H0 'V x.. 

The dependence of x.B on (H0 - lic 1 ) is given by 
the universal function 

lem. 
To conclude this section, let us turn our atten­

tion to the intermediate state in noncylindrical 
speciments (or cylinders in nonparallel fields). It 
is most interesting that no intermediate state arises 
in specimens for which x. » l. One obtains instead 
a uniform pattern of a mixed state (in ellipsoidal 
samples). When the transition in the field H c 1 is of· 
the first order, however, an intermediate state does 
anse. 

3. COMPARISON OF THEORY AND 

EXPERIMENT 

No detailed data exist currently on the magnetic 
properties of superconducting alloys. The only 
work which is more or less suitable for comparison 
with the theory is that of Shubnikov, Khotkevich, 
Shepelev, and Riabinin, 4 performed in 1937. Let 
us compare the theoretical results with the data of 
this work. 

If we are to speak of general qualitative charac­
teristics, we must first note that starting at some 
alloy concentration, the 8(110 ) curve indicates a re­
gion of partial field penetration; this corresponds 
to the conclusion reached above on the existence 
of a mixed state. This region is bounded by the 
two field strengths Hc 1 and Hc 2 , and although the 
transition from the superconducting state to the 
mixed one can be either of first or of second order, 
the transition to the normal state must definitely be 
of first order. In the neighborhood of Hc 2 , the 
B(H0 ) curve is linear. All this is in agreement with 
the results of Sec. l. Further, if the alloy concen­
tration is sufficiently high, the transition at Hc 1 

seems also to be of second order. According to the 
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Alloy 
I T°K I He, I Hem I xvz tan~ I tan~ Hel I Hel 

composition (theory) (exp.) (theory) (exp.) 

Pure Ph 14.241 I 
540 1 0.22+0.361 

I I 

Pb + 2.5% Tl 
4.22 704 596 
1.92 1100 846 

Pb + 5% Tl 
4.22 1010 561 
1.82 1730 854 

Pb + 15% Tl 4.22 2170 534 
1. 76 3760 762 

Pb +30% Tl 4.22 2840 575 
1.70 4460 756 

Pb +50% Tl 
4.22 2270 370 
2.3 4270 520 

Pb+2% In 4.22 983 604 
1. 95 1520 842 

Pb+8% In 4.22 2400 563 
1. 75 3780 812 

theory, at this point the B(H0 ) curve has a vertical 
tangent, and then begins gradually to approach the 
straight line B = 1!0 • This conclusion also more or 
less agrees with the experimental curves. 

1.18 
1.3 
1.8 
2 
4.07 
4.9 
4.94 
5.9 
6.14 
8.2 

1.6 
1.8 
4.26 
4.7 

Going on to a quantitative comparison, we note 

that the two parameters Hem and x which enter into 
the theory must be determined from the experimental 

curves. This can be done by finding the upper crit­
ical field He 2 and the area under the curve of the 
magnetic moment B(H0 )- H0 , where H0 is the field 

strength. In fact from the.definition of Hem• we 
have 

00 

+H~m= ~[H0 -B(Ho)]dHo 
0 

Hc2 

= ~ [H 0 -B(H0)]dHo. 
(46) 

0 

Of course in order that Hem defined in this way 
have meaning, it is necessary that the experimental 
B(H0 ) curve be that for equilibrium. When we know 

Hem• we can find x from the equation He 2 = x{'iHem· 
The values of Hem and x obtained in this way 

can be used to compare the magnetic moment in the 
neighborhood of the upper critical field H e 2 with ex­
periment. According to Sec. 1, the dependence of 
M on ll0 is given by Eq. (23). 

We can compare with experiment, in addition to 
M, Eq. (36) for the first critical field. 

The results of such comparison are given in the 

2,12 2.2 - 510 
1.21 1.2 - 740 
0.38 0.38 - 430 
0.27 0.27 - 600 
0,054 0.052 150 230 
0.036 0.036 210 310 
0.036 0.033 150 170 
0.025 0.023 190 240 
0.023 0.02 90 110 
0.013 0.014 120 150 

0.51 0.45 - 53,) 
0.37 0.3 - 730 
0.049 0.045 170 220 
0.041 0.043 240 310 

Table.* One should bear in mind that the accuracy 
with which the slope of the magnetic moment curve 
is determined in the neighborhood of H 02 (let us de­
note the ratio in Eq. (23) by tan~) and He 1 from the 

curves of Shubnikov, et al. 4 is no greater than 15%. 
It is seen from the table that the data for tan~ are 
in very good agreement with the theory. The values 
of tan~ vary from specimen to specimen by a fac­
tor as high as 150, and the theory always gives the 
correct value within the above-mentioned limits. 

The situation with respect to lle 1 is somewhat 
worse. Although the theoretical values are always 
of the same order of magnitude as the experimental 
ones, they lie too low in all cases. It should be 
borne in mind, however, that the values of x dealt 
with here are not very large compared to unity, and 
this can lead to a systematic error in determining 
Hc 1 from (35), an equation which is valid only when 

x » 1. It is not difficult to see in which direction 
the theoretical value must be corrected in order to 
account for the fact that x is not very large. This 
can be done by making the natural assumption that 
He 1 =Hem when x = l/{2. Instead of this, inser­
tion of x = 1/y'2 into Eq. (36) leads to a negative 
value of ll c 1• Thus for values of x which are not 

*It is significant here that the theory remains appli­
cable for temperatures far from Te. As fields close to 
Hc 2 , this conclusion is strictly correct, since 'I' is small 
in this region. Recently, however, Ginzburg8 has pre­
sented arguments which tend to show that the theory is 
applicable also for arbitrary fields and temperatures. 
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very large, the actual theoretical value of He 1 

should be greater than that given by (36). In prin­
ciple, it is also possible to perform a comparison 

between experiment and Eq. (45) for B(H0 ) in the 
neighborhood of Het· This equation, however, is 
in principle valid only for x. » l, so that only a 
qualitative comparison is possible; this has already 
been done at the beginning of this section. Further­
more, the experimental curves in this region are 
measured with very low accuracy, so that a quanti­
tative comparison is not really very meaningful. We 
note here that according to the experimental data, 
when x. is close to l/y'2 the transition to the mixed 
state would seem to be a first order phase transi­
tion. In this case the concept of isolated filaments 
does not correspond at all to the mixed state at the 
transition point. 

In order to investigate the dependence of Hem 
and x. on the concentration, let us compare their 
values at a fixed temperature of 4.2°. For compari­
son, the table gives the data also for pure lead at 
the same temperature, taken from Lock. 9 It is seen 
from the table that Hem hardly depends on the con­
centration (except for the 50% Pb-Tl alloy). The 
variation is no greater than 11% and has no appar­
ent regularity. However, x. increases regularly with 
increasing concentration, and varies for Pb-Tl al­
loys from 1.18 at 2.5% Tl to 6.14 at 50% Tl. 

Some years ago Pip pard 10 made the interesting 
suggestion that there exists in superconductors a 
certain characteristic le.ngth (the coherence length) 
which determines the "range of order" of the super­
conducting electrons. This length characterizes 
the minimum distance at which the number of su­
perconducting electrons may change significantly. 
It may, for instance, refer to the thickness of the 
transition layer between the normal and supercon­
ducting phases. 

According to the theory of the previous sections, 
the quantity 8/ x. should play the role of such a 
length. This length determines the thickness of 
the transition layer in the intermediate state. 2 If 
we bear in mind that x. = (y'2e/hc)Hcmo2 , then it is 
clear that the characteristic length is proportional 
to 1/y:;;. According to Pippard, this length should 
depend strongly on the impurity concentration. At 
high concentrations it should be of the order of the 

mean free path of an electron in the metal. It is 
seen from the table that this concept is not in dis­
agreement with the experimental data. 

The r'esults described show that the quasi-micro­
scopic theory is able to describe many of the regu­
lar prop,erties of superconducting alloys. Thus 
these regular properties arise primarily not because 
macroscopic regions with relatively large values of 
Te and Hem arise in the alloy, as has been thought 
previously, but from the destruction of electron 
order at distances small compared with the pene­
tration thickness o. 

It is true, of course, that macroscopic inhomo­
geneities may be of importance. Without even go­
ing into the fact that a strong inhomogeneity can 
change the overall pattern, we note that such a phe­
nomenon as the remanent magnetic moment cannot 
be described by the present theory and is more 
probably a result of such inhomogeneities. The 
structure of the field penetration itself should be 
extremely sensitive to inhomogeneities, so that in 
real substances it would hardly be in the form of a 
regular lattice. 

In conclusion I take this opportunity to express 
my gratitude to Academician L. D. Landau and N. 
V. Zavaritskii for valuable comments and discus­
sion of the work. 
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