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value. The probability of transition into higher 
states depends appreciably on the boundary condi­

tion. 

2. MINIMUM ANGULAR WIDTH 
OF THE WAVE FUNCTION 

The action of centrifugal forces and the energy 
loss of the a-particle (nuclear rotation) lead to a fi­

nite width of the wave function on the sphere of exit 
from underneath the barrier, even for a 8-function 
distribution of a-particles on the sphere l. The in­
tensities of the fine-structure lines in the a-spec­
trum for a deformed nucleus cannot, therefore, ex­
ceed the values given by the simple Gamow formula, 
which does not take into account the nuclear defor­
mation. The minimum width of the wave function can 
be obtained either by using formula (A.5), putting 

c = oo, or directly from Eq. (10), by letting v1 = 0 and 
y1 (x0 ) = oo in the Ricatti equation. We obtain 

The angular half width .&* of the wave function is 

determined from sin .&* ""y k0H.0y1 (x *); for the values 
of d mentioned above and for k0 R0 "" 8, it is equal to 
"' 40°. As can be seen from Eq. (10), the quadrupole 

potential can only decrease the value of y1 (x*) and 

leads, therefore, to an additional increase of the an­
gular width of the wave function and to a decrease 
of the probability of transition into excited rota­
tional states. 
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The field produced by a charge moving parallel to the axis of a cylindrical channel in a 
dielectric is determined. The field and energy losses of the charge are computed for vari­
ous assumptions concerning the medium. 

THE PASSAGE OF A CHARGE along a channel 
in a dielectric was first considered by Ginzburg 

and Frank.1 These authors calculated the field pro­
duced by a point charge moving with uniform motion 
along the axis of a cylindrical channel of radius a, 
filled with a dielectric 8 1 (cu) in a medium of dielec­
tric constant 8 2(cu). 

Problems connected with the passage of a charge 

along the axis of a channel in a dielectric have also 
been treated by Bohr, 2 Schoenberg, 3 Huybrechts, 3 •5 

and Sitenko 6 (problems of this type have also been 
considered in Ref. 7). 

In problems concerning the generation of electro­
magnetic radiation, focusing of charged particles in 
a cylindrical channel, and the theory of Cerenkov 
counters, it is of interest to consider the case in 
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which the charge moves in the channel along a 
straight line parallel to the axis rather than along 
the axis itself. 

1. We consider an infinite cylindrical channel in 
an isotropic medium of dielectric constant 8 2(w). It 
will be assumed that the space inside the channel is 
filled with an isotropic dielectric with dielectric 
constant 8Jw). The radius of the channel is denoted 
by a. We consider a charge which moves with uni­
form motion along a line parallel to the axis of a 
channel at a distance r0 • The equations for the elec­
tromagnetic field potentials are as follows: 

6.~ =- 47i:p 
' s ' 

s o2A 471: • s ocp 
6.A - ~-- -- = - - J -L -grad - . 

c2 Oi 2 C I C Oi (l) 

In what follows we shall choose the potential gauge 
to make divA== 0. In Eq. (l) 8 = 8 1 inside the chan­
nel and 8 = 8 2 outside. We introduce the cylindrical 
coordinates r, cp, and z with the z axis parallel to 
the channel axis. The angle cp is measured from the 
plane which passes through the axis of the channel 
and the line of motion of the charge. Then, in Eq. 
(l) the charge density pis given by: 

p =eo (r- ro) o(z- vt). (2) 

Here r0 is the projection of the radius vector of the 
particle on the plane z = const, while r is the pro­
jection of the radius vector of the point of observa­
tion on the same plane. In the present problem it is 
convenient to represent o (r - r0 ) in the following 
form: 

m=oo 00 

o(r-ro) = :h ~ eimq>~ Jm(kr)Jm(kro)kdk, 
m--oo 0 

(3) 

where ! m(x) is a Bessel function of order m and ':P 
is the angle between rand r0 • For o(z- vt) we use 
the usual representation 

0 (z- vt) = 2~v ~ eiw(z -vt)fv dw. (4) 

Taking account of (3) and (4), Eq. (2) can be re­
written in the form 

m=oo 
e ~ . 

o = -- .LJ e""" 
' (27i:)zv m=-co 

X ~ J m (kr) J m (kr 0 ) eiw(z-vl)ivk dk dw. 

(5) 

Bereinafter, when the limits of integration are not 
given explicitly, the integration over k is taken from 
0 to oo while the integration over w is taken from 

- oo to+""· 
We find the solution for the first equation in (l). 

The expression for p in (5) is an expansion in the 
eigenfunctions of the Laplacian operator in cylin­
drical coordinates. This facilitates the determina­
tion of the particular solution Cf!inhom of the inhomo­
geneous equation. If we write p in the form 

nz=oo 

p=(2~2v~ ~ ~Pm(r,z,cp,t,k,w)kdkdCJ), (6) 
m=:;;;;..··oo 

then from Eq. (5), Pm satisfies the equation I'J.pm 
= /..pm, i.e .. , it is an eigenfunction of the Laplacian 
operator with eigenvalues /.. =- (P + (J)2 /v2 ). 

Whence it follows that 

m=oo 

~ J (kr) J (Ia ) 
_ e '\' imq> m m 0 iw(z-·vl)/v 

cp - m; ~ e s (w) (f12 + w"";vz) e lulk dw. 
m=-oo 

(7) 

The integration over k in Eq. (7) is performed with­
out difficulty. We obtain 

m.::=oo 

(!) = _e__ ~ eimq> \ eiw (z-vt)'v ~ . ( r' w) dcu, (8) 
• 7tV ~ ~ • m mhom 

m'=-OO 

Here, lm and Km are Bessel functions of imaginary 
argument. Eq. (8) gives the particular solution of 
the inhomogeneous equation inside the channel. To 
this solution it is necessary to add a solution of the 
homogeneous equation which satisfies the boundary 
conditions at r = a. 

To the solution in (9) we add the function Cf!mhom 

which satisfies 

(10) 

The boundary conditions at r = a 

o = a;2 , s ao 1 or= soa<l' 1 ar • 1m 1 m 1 • Im ... ! 2m 

yield 
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(ll) 
(v/wa) I m (I w 1 r 0 /V) 

lm = ----~------~------------~------~-------
<=1Km ([ w I ajv) 1;" (I w I ajv) -- <: 2 /m (I w I afv) K',. (I w I ajv) · 

Thus the potential of the longitudinal field is completely determined. The expansion of the potential is 
of the form given in (8) where instead of cpminhom we must use cpnzinhom + cpmhom• 

We now ascertain the vector potential \ for the transverse field. First we find the particular solution 
for the inhomogenous equation 

A <: iJ2A 4rr • s iJcp 
uA - c2 iJt2 = - c J + c grad at -

The solution of this equation is conveniently represented in the form 

(12) 
m-+co 

A c ~ . (' - ( t' 
I = - 7, e'm9 \ e'"' z-v ):v A I (r w) dw 

nc .-..... • .t m ' ) 
rn=-co 

Amzi = 81 ~i 2 l Krn C; I r) lm ~~-;I r0)- x7Krn C; I z 1rJlm ( 1 ; I z 1 r,,)], 
Amrl = - 81

1j'i [1,;11 (L~J r) lm \ 1 ; I r0 )_- z)\;n ( L;-1 z1r) I m C ;J z1ro)], (13) 

Am,.l =:!_!_V - 1-., [l(m ( ~r \ lrn (l__(>lj ro)-Km (~ zlr) lm (~ "'1 r_~'\] , 
wr s 1 _j- \ v / v v v ') 

z 1 =VI-21 ~ 2 , w_:::>-0, r>r0 , r<a. 

Equation (13) applies for w > 0, r > r0 • For r < r0 , the expressions .for Am are obtained from (13) by re­
placing I m with Km, K~ with/~, and Km with l m• For example, for r < r0 , W > 0: 

i l' (lwf )' (fwf ) '(feu[ ' (feu[ \] Amrl = -- <=1 ,12 lm -v- r Km -v- ro - xi/m v x 1r) Km -0- x 1r0 J . 

When w < 0, the complex conjugate of the expression is used. In this case, if 8 1 /32 > 1, 

The expressions in (13) also apply when r > a; in this case 8 1 .is replaced by 8 2 •• 

The term A11 is determined by the expression -

m=+co 

All=-~- ~ eimq> ~ eiw<z-,•t)lv Ami I (r, w) dw, 
m=-oo 

where 

r<a, 
Arnzll = Amrl! = 

_ .YmK' (~) l 02 m r 
·" v 

r>a, Y_m K (~ ) ~2 m v r r>a, 

(14) 

Am:pll = 

~!'l_Ym K (~r) 
cur ~ 2 m v r>a. 
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Equations (13) and (14) yield the particular solution of the inhomogeneous equation inside and outside 
the channel. 

We now find the general solution for the homogeneous equation. It is necessary to find the general ex­
pression for the "cylindrical" vector, i.e., the vector which satisfies the following equation in a cylin­
drical coordinate system: 

<\hom= 0, div <\hom = 0. 

It is easily shown that this vector can be written in the form 

A h = _!__ m~oo eim9 i eiw(z-vt)/V A (r w) dw 
om TCC ~ J m hom ' ' 

rn=-co 

Amrhom= 

1
- 8~~ 2 I m (I~ 1 x1 r0) [. ~~ A2Im(' ~I x1r) + 01mi;, (l~-L 1 r )J r <_a 

Am9 hom= 

-:;;~Im(l~lx2 ro)[S)';7KmC~/x2r)+B2mK~(I~/x2r)] r>a. 

The coefficients ,\lm• ,\2m• elm and 02m must be determined from the continuity conditions onE z• Ecp, 
Er and Hz at the edge of the channel. These conditions yield four equations for the coefficients. For 
brevity we shall use the following notation 

Then, 

lm(L~I x2 ro) = fx,, 

Im('~ 1 xla)=ll. 

(15) 

(16) 
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Equations (13), (14), (15) and (16) determine com· 
pletely the vector potential of the transverse field 
which satisfies the boundary conditions. If, in we 
set r0 = 0 the formulas obtained earlier for cp and A 
these equations pertain to the motion of a charge 
along the axis of a channel of radius a. This pro­
cedure is easily carried out, noting that 

I m (0) = { 1 m = 0 
0 m =!= 0, 

while ml m (0) = 0 for any m. As is to be expected, 
the formulas for cp and A go over to expressions for 
thepotentials obtained in Refs. 1 and 7 in which 
the motion of a charge along the axis of a channel in 
a dielectric was considered. 

2. Using the gauge which is obtained from the 
condition divA= 0, it is possible to divide the field 
into a longitudinal part and a transverse part. For 
example, 

a<p 1 aAz (17) 
Ez1ong = -az, Eztr =-cat 

In what follows, it will be of interest to find the en­
ergy lost by the charge in the excitation of the trans· 
verse field in the medium, in particular, the loss due 
to Cerenkov radiation. This energy loss can be de­
termined in terms of the reaction on the charge itself 
of the transverse field created by the charge 

(X) 

e2"" \iw{ (lwl )[ (lwl) eEztr = 1tV2 L.J am .\ 81 I m -v- r0 Km -v- r0 

m=O 

+ Cl.mi m (' ; I r 0) J - xi I m (' : I xl r o) [ K m (' ; I x1 r 0) 

+ A1mi m ('; I xl r o) ]} dw, ( 18) 

where am = 1 for m = O' and am = 2 for, m =I= 0. 
For values of <:u which satisfy 8 1 (<:u) = 0, the ex­

pression under the integral sign has no singularity. 
This is to be expected since the losses at the fre­
quencies for which 8 1(w) = 0 are characteristic only 
of the longitudinal field. 

The loss integral is determined by the residues at 
the poles of the expression under the integral. 
Be cause of the poles the integrals become series 
and the continuous spectrum is replaced by a dis­
crete spectrum characteristic of a waveguide. 

To compute the dependence of the energy integral 
on r0 , we consider the case analyzed by Ginzburg 
and Frank/ i.e., the motion of a charge inside a 
hollow channel when 

Since x. 1 = ~ > 0, I m and Km are real func­

tions; hence the energy loss (18) for the present 
case can be expressed as follows: 

2 00 

eEztr =-~ (1- ~2 ) "" am 
1tV L.J 

m=() 

X ~ ),Imi~ (': I x1 r 0) iwdw, 
&,[3'>1 

where .\1m is determined from (16). 
If the departure of the charge from the axis of the 

channel is small, the energy integral is simplified if 
I m is expanded in powers of r0 

(19) 
Aro +An . 3d 

2 tw w. 

Using well-known relations for Bessel functions, it 
may be shown that the first term in (19) coincides 
with the expression obtained in Ref. l. The second 
term in (19) is proportional tor~. This dependence 
on r0 at small r0 indicates that when the charge 
moves along the axis of the channel the loss is 
either a maximum or a minimum. The coefficient .\ 11 

[cf. (16)] is a complicated complex function and, in 
the general case, an investigation of the expression 
in (19) is difficult. 

3. We consider the motion of a charge in the par­
ticular case in which the second medium is a metal 
with infinite conductivity. This case is character­
ized by x. 2 -+ oo and 8 2 -+ - oo. 

It is easy to show that in the case at hand (18) 
goes over to the expression 

(20) 

Actually a pole is found when J m ('; I Vs1~2 -la) 

= 0, i.e_., for values w = Wms• for which 

I <Oms I v ( ) ~n 1 h · h -v- s1 Wms " -- a = ~J.ms w ere flms Is t e 

sth root of the Bessel function of mth order. The 
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following expression is obtained for the loss due to 
Cerenkov radiation: 

If the material with which the wave guide is filled 
is dispersion less, that is, if 8 1 = const > l/'32 , the 
loss can be written in a simpler form 

eE __ 4e~ ~ [_.!_ J~ (f1.0s'ofa) + ~ J'7rz ;~ms rofa) l· 
z - a2e:1 L.J 2 J'2 ("· ) L.J J (" ) 

8 _ 1 0 ros m=I m rms. ~ 

(22) 

Eq. (22) was obtained by a different method in Ref. 
8. If the charge moves along the axis the formula for 
the loss due to Cerenkov radiation goes over to the 
expression first obtained by Akhiezer, Liubarskii, 
and Fainberg: 

Using Eq. (22) we can determine the magnitude of 
the Cerenkov-radiation loss as a function of r0 • The 
Cerenkov loss is a maximum when r0 = 0. Actually, 
it is easy to show that in this case, when r0 = 0 

When r0 =a, the loss is equal to zero. 
4. The case of a charge which does not move 

along the axis allows an analysis of the radial force 
which acts on the charge. A charge moving in a 
channel with e 1_82 < l, will radiate into the outer 
medium. The radiation reaction in non-central mo­
tion will be directed not only along the line of mo­
tion of the charge but also in the radial direction. 
From simple physical considerations, it is clear 
that if the radiation of the charge is directed into 
the external medium, the charge should experience a 
recoil force in the direction of the axis. However, 
in addition to the radiation reaction, there are also 
so-called "image" forces which arise as a result of 
the presence of the boundary. It is impossible to 
separate the effect of the image force from the reac­
tion on the Cerenkov radiation. 

We now find the conditions for which the charge 
is focused towards the axis. We write the radial 

component of the force which acts on the charge 

F r = eE r + ~ ( v X H] r , 
• co 3 

F r = -- ~i '-, am \ l I m (~ x1 r o) 
1t'V L.J J E1 V 

m=o 

ao =' l, am = 2 for m -4-- 0 

It is obvious that a contribution to the radial force 
is given only by terms with Aim under the integral. 
Hence, 

m-o 

(23) 

The sign ofF r is determined by the sign of Re Aim 

since I m and/~ are positive real functions. As has 
been indicated above, Aim is a complicated function 
and in the general case it is impossible to ascertain 
the sign of the radial force. In the particular case 
of the emission of waves whose wavelength is much 
smaller than the radius of the channel, I cui x 1 a/ v » l, 
it is possible to make use of the asymptotic form of 
the Bessel function and the expression for Aim is 
simplified considerably. 

For lculx1a/v .. oo: 

where t2 = s 2(32 - l and x~ = l - 8 1 W. From the 
expression for Aim it is obvious that Re Aim> 0 
when 

In this case the charge experiences a focusing force. 
5. It is well known that when a charged particle 

moves uniform! y in an infinite cylindrical channel in 
which the conditions for Cerenkov radiation are sat­
isfied while the Cerenkov radiation cannot be ex­
cited in the medium external to the channel, i.e., 
when 8 1 W > l and 8 2 {32 < l, the spectrum of the ra­
diation in the channel will exhibit a discrete char­
acter, in contrast to the continuous spectrum radi­
ated by a particle in an unbounded medium. 

The equation for the frequency spectrum has been 
obtained by Bolotovskii for the case in which the 
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charfed particle moves along the axis of the chan­
nel: 

X J~(~a V81~2 -1) 

+ Ez V 81~2 - 1 J o (I : I a V 81~2 - 1 ) (24) 

XK~ (': 1a V 1-82~ 2) = 0 

In the short-wave range, i.e., when wyl - 8(32 
a/v » l, Eq. (24) can be simpl,ified considerably if 
the asymptotic expressions for the Bessel functions 
are used 

(JcuJ ~~ 2 7t) e:2Vre:1~2-1 tan -a r 8 R - 1 - --- = --
v H' 4 s1 1 - e: 2 ~ 2 ' 

(25) 

this expression is similar to that derived by Frank 
for this case from simple physical considerations.10 

For practical purposes it is of interest to analyze 

When m = 0, (27) goes over to (25). The expres­
sion in the right-hand part of (27) can be called the 
change of phase of the mth harmonic in total internal 
reflection. It is interesting to note that the equation 
which determines the eigen-frequency of the 
Cerenkov radiation produced by a particle moving 
with a velocity close to the velocity of light in the 
case where the external medium is a metal has ex­
actly the same form as that pertaining to a Cerenkov 
counter, in which the radiation undergoes total in­
ternal reflection at the boundaries (for example, 
8 2 = l). Actually, the metal is characterized by 
8 2 -+ - oo, x 2 -+ oo while in the second case 8 2 = l, 
,8 = l, i.e., x 2 -+ 0. The dispersion equation (27) in 
both cases assumes the form 

(~ mn 7t) tan v as - 2 - 4 __.,. oo, 

. I cu I mrt 1t ,,e., vas --z-+ 4 = rrn, 

where n = 0, l, 2 .... l-Ienee, the radiation spectrum 
produced by a parallel beam of relativistic particles 

the radiation spectrum when a charged particle 
moves parallel to the axis of a cylindrical channel 
but at a distance r0 from the axis. Using (16), the 
dispersion equation for this case can be written as 
follows: 

2 2 I I I f 

s x2 [s1x2K2J1 + c2sJ1K2l [- sJ1K2- x2J1 K2l 

(26) 

where for brevity, we have introduced the notation 

S2 _" R2 -1 
--It" ' 

( I cuI ) (I cu I ) K2 = Km -0-ax2 , J1 = Jm -0-as . 

This equation has discrete roots. In the radiation 
of short waves, just as in (25), the asymptotic form 
of the Bessel function can be used and the disper­
sion equation can be written: 

(27) 

is the same in a silvered and non-silvered Cerenkov 
counter. 
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