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The relative probability of excitation of rotational states in the v.-decay of deformed 
even-even nuclei is computed. The deformation parameter of the nucleus is determined by 
comparison with the probability for transition to the 2 + state. The values of the deforma­
ltion parameter and relative probability of transition to a 4 + rotational state obtained in 
this way are compared with the experimental data. 

T HE EXCITATION of the rotational states of a 

nucleus in cx.-decay can be produced either by 
the interaction of the cx.-particle with the non-spher­
ical field of nuclear forces, or by the interaction of 

the a.-particle with the Coulomb field of the non­
spheri-cal daughter nucleus. The rotation of the nu­
cleus plays an essential role. 1 The decay of even­
even nuclei turns out to be especially simple when 
the quantity of motion of the whole system is equal 
to zero. In this case the Schriidinger equation for 

the system: a.-particle +deformed daughter nucleus 
is greatly simplified- in the Hamiltonian of the sys­
tem one can exclude the rotational coordinates of 
the core. For even-even nuclei, the Schrodinger 
equation in spherical coordinates has the form1 

-----1l2 - +- l~u = (V -E) u, 'fL2 iJ2u ( 1 1 ) ~ 
2m ar2 2mr2 J 

( l) 

where 1./J(r) = u(r)/r is the wave function of the sys­
tem and depends only on the coordinates r of the 
a.-particle relative to a coordinate system fixed in 
the nucleus; m is the mass of the cx.-particle, J the 

nuclear moment of inertia, E the energy of the sys­
tem (equal to the energy of the a.-particle at infin­
ity, at the transitio~ to the ground state of the 
daughter nucleus), l 2 is the operator of the square of 
the angular momentum: 

["' 1 a.&a 
• == -~a--" sm ·a-" ' Slllv ..:r ..:r 

where & is the angle with respe~t to the nqclear sym­
metry axis. In tne expression of l 2 the term l!- which 
contains uifferenciation with respect to the azimuthal 
angle cp, has been omitted because the wave function 
does not depend on cp. If the wave function did con­
tain states with non-zero projections of the angular 
momentum on the symmetry axis, the nucleus would 

rotate close to the symmetry axis. This is impossi­
ble because the moment of inertia with respect to 

the symmetry axis is zero (Jz = 0, fx = fy =f). 
As it will be shown below, the angular depend­

ence of the wave function is determined, for large 
distances from the nucleus, principally by the ani­
sotropy of the Coulomb barrier and by the effects of 
nuclear rotation and centrifugal forces. The effect 
of nuclear interaction comes as an unknown bound­
ary condition on the nuclear surface and has a rel­
atively small influence on the intensity distribution 
in the cx.-spectrum. 

In the region outside the nucleus, let us expand 
the wave function into the quasi-classical series: 

u = exp {Ji-1 [S0 (r) + tS 1 (r) + ... ]}. (2) 

The method of successive approximations gives for 
51 and 52 the equations: 

where the following notation has been introduced 

v(x)==V(r)jE; x=r/R0 ; ~ =mRgjJ; 

T/ = sin2 & for o. > 0 (prolate nucleus) and T/ = cos2 & 
for o. < 0 (oblate nucleus). It is assumetl that the 
nuclear deformation is small and that, therefore, the 
nuclear surface can be described by the following 
equation which is exact up to the terms of the 
order o.2 

1150 
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R (-:±) = Ro (I- 1j 5a2 + aP2 (cos,&)) 
(5) 

where 8 = 2~ \a.\, a. being the nuclear deformation 
parameter, while x0 = 1 + \ a.\y- a.2 /5 is the major 
semi-axis of the nucleus. The parameter y is equal 
to 1 for a prolate nucleus, and to ~ for an oblate nu­
cleus. R0 is the radius of s sphere of volume equal 

':!, 
to the nuclear volume: R0 = r0 A 3 • 

Let us expand the functions y, 51 and v in a power 

series of Tf: 

y = ~n Ynrt; sl = ~nZn (x) 'Yjn; v = ~nVn (x) rt .• 
(6) 

From (3) and (4), we obtain the following equations 

for y n and zn: 

y;n +2m (2- olin) (x- 2 + ~) YIYm!Y~ = gm (x), (7) 

z;n + 4m (x-2 + ~) y1zm/Y~ = hm (x), (8) 

where Oab is the Kronecker symbol. The functions 

gm and hm have the following values for m = 0, 1, 

and 2: 

g0 = V V0 - ljy~, h0 = [- y~- 4 (x- 2 + ~) y1]j2y~, 

gl = vlj2y~, hi = [- y~z~- IJ2Y~ 

+ 8 (x-2 + ~) (y2 + 3/sYI)]jy~, 
g2 = [- (y~) 2 + 4Yi (~ + x-2 ) ]/2y~. 

Here 
V0 = b (x-1 + 0.4"[Sx-3); 

v1 =- 0.6 sbx-3 ; b = 2Ze2jR0 E; 

(7') 

all the vm with m > 1 are set equal to zero because, 
in what follows, we will take into account only the 
quadrupole potential of the nucleus. 

The functions gm always contain Ym• with m'.< m, 
so that Eq. (7) can be solved consecutively. The 
same holds for Eq. (8) because the right hand side 
on the mth equation (8) contains only those zm' for 
which m '.< m. The solution of Eq. (7) for m > 1, as 
well as the solution of any of the equations (8), can 
be written in the form 

X ( X 2 

Ym = exp (-4mf (x)) {Ym< (~o) + \ ~m (~)) exp (4mf (t)) dt}, F (x) = \ (~ + ~) Y~ dx. (9) 
2m 2m -'o) J m J x Yo 

X 0 Xo 

Form = 1, Eq. (7) is the H.icatti equation 

( 10) 

and its solution can be found in a general form. 
Let us take the boundary condition for the solu­

tion of Eq. (3) in the form 50 (r) = const = 0 on the 
surface of the nucleus, or y [x (Tf), ry] = 0. Expand­
ing the left hand side of this equality in a power 
series of the small quantity 87] and equating to zero 
the coefficients of Tfm we obtain the boundary con­
dition for the function Ym at the point x0 : 

The values of the functions Ym at the point X 0 for 

m <; 2 are: 

~(xJ=O, ~~J=s~(xJ, 

y~ (xo) = 3lj~ (xo)- Ij232y~ (xo). 
( ll') 

The boundary condition chosen for the wave func-

tion is, of course, not exact. However, if the true 
wave function is a smooth function of ,& on the sur­
face of the nucleus, the possible inaccuracy of the 
boundary condition on the nuclear surface will lead 
to an error in y m (x0) of the order of 1/ k0 R (boundary 
conuition (ll) gives for y1 (x1) a value of the order 
of 8x./k0 , where x. is the value of the wave vector of 
the a.-particle in the neighborhood of the nuclear 
surface). This error is not substantial, because the 
angular dependence of the wave function in the 
neighborhood of the sphere of exit from underneath 
the barrier depends very weakly on the boundary 
condition on the sphere x = x0 • Indeed, the function 
F(x) of Eq. (9) is positive and monotonically in­
creasing with x in the whole region under the barrier. 
Therefore, at large distances from the nucleus, the 
first term in Eq. (9) (which depends on the boundary 
condition) is strongly attenuated by the exponential 
factor. This result has a simple physical meaning: 

close to the nuclear surface, only small angles are 
important:&~&*= {8x.R0fY.. This is true for the 
functions Ym for m > l. It is easy to convince one­
self that, at large distances, y 1 depends also 
weakly on the boundary condition, but only if y 1(X0 ) 
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is not too small. The reason is the following: close 

to the nuclear surface the wave packet contains 
o.-particle states and, correspondingly, nuclear 
states with high angular momenta: l-$ 2 8xR0 (see 
Appendix). During further passage through the bar­
rier, the packet smears out owing to the concurrent 
action of the nucleus, of the centrifugal forces, and 

of the quadrupole potential. The first two effects 
are proportional to the square of the angular momen­

tum, i.e., during passage through the barrier, the 
smearing of the packet increases as the angular dis­
tribution of the cx.-particles in the neighborhood of 

the nucleus gets sharper, i.e., as y 1 (x0) increases. 
As will be shown in the Appendix, it is for the same 
reason that the anisotropy of the wave function can­
not be very large at large distances. In practice, 
the half width of the wave function cannot be less 
that 40-50°. 

One cannot set up a correct boundary condition 
for the functions zm, because these functions are of 
the same order of magnitude as the possible inac­
curacy of the boundary condition. However, if one 
takes into account that at large distances the func­
tions zm depend also weakly on the boundary condi­
tion, one can set them equal to zero on the sphere 
X= X 0• 

It is easy to see that with such a boundary con­
dition for the functions zm, and with boundary con­
dition ( ll) for the function Ym the expansion of the 

wave function in a power series of 7] = sin & or. 
cos & is at the same time an expansion in the pa­
rameter 8. Indeed, as it can be seen from Eq. ( ll), 
the boundary condition on the functions Ym has the 
property that Ym (x0) is of the order of 8m [see also 
(7') and ( ll' )]. The same is true for the right-hand 
sides of (7). It follows that the solution of these 
equations themselves will diminish as 8m. The 
same holds for the functions Zm with the boundary 
condition zm (x0} = 0. * Let us note that the function 
F (x) in (9) is, for small deformations, proportional 
to 8, and that all that has been said above about 
the weak dependence of the angular distribution of 
cx.-particles at large distances on the conditions at 
the nuclear surface is true only for dedormations 
which are not too small: the function F (x) must he, 
in the neighborhood of the sphere of exit from under­
neath the barrier, of the order of unity (actually F 
turns out to be equal to 0.2-0.4). The relative 

*The solutions of the mth equations of (7) and (8) and 
the functions Ym and Zm contain also terms of order higher 
than 8m. These terms are substantial at large distances 
from the nucleus. 

probability of excitation of a rotational state of the 
daughter nucleus with spin I is equal to 

'. . \ 
(2/ + I)(,~ sm & d&'i (&)PI( cos&) p 

0 

1t 

~sin&d&~(&), ( 12) 

0 

where P1 (cos &) is the Legendre polynomial and 
for~(&) one can take the wave function in the 
neighborhood of the sphere of exit from underneath 
the barrier. In order to determine t/J(&) in first ap­
proximation with respect to ex., one has to solve the 
Ricatti equation (lO). In this approximation we 

simply have 

'i (&) ~· exp {-a(:~~:!)}, a= koRoYI(x)*, 

and the integrals in ( 12) can be evaluated in a gen­

eral manner. For an oblate nucleus we obtain: 

a 

z(a) = ~ e1' dt. 
(13) 

0 

The solution of the tticatti equation can be sim­
plified if one takes into account that the contribu­
tion of the quadrupole potential is small* with re­
spect to the contribution of the tern1 proportional to 
y~. * The accuracy of the first approximation is, 
however, not sufficient, because ~ is a sharp func­
tion of ex. and, if the determination of the wave func­
tion is not accurate enough, the error in ,;1 can be 

too large. Because of this, the wave function has 
been computed taking into account terms of the 
order cx. 2 in the quasi-classical part (in 50 ) and a 
term of the order ex. in the quantum correction. t The 
wave function has the form 

*Formally, v1 of (lO) is a small quantity of lower order, 
but since the quadrupole potential falls off rapidly with 
distance, its contribution at large distances becomes nu~ 
merically small relative to the contribution of the term 
containing y1

2 • 

tAn actual calculation of terms of higher order (y3 and 
z 3 ) for the case of the decay of U234 and ex.= 0.15 has 
shown that the contribution from these terms is indeed 
small (the correction to the exponent is.;;;; 0.1); practically, 
one can therefore limit oneself to the terms mentioned. 
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(a/a 1 .--v 2). For Y1 , 2 and z1, their value at the point 

x* = b- 1 was used, i.e., somewhat short of the 
exit sphere. One has to do that because in the im­

meuiate neighborhood of the exit sphere the quasi­
classical approximation is not valid. But one can 

show that in the region x 3,x* the angular depend­
ence of the wave function is practically constant. 

The calculations were performed on an M-2 elec­
tronic computer. Equations (7) and (8) were solved 
using variable increments chosen to make the accu­
racy of the functions at the point x* of the order of 
10-3 • The integrals in Eq. (12) were computed for 

I = 2 and 4 using Simpson's rule with a spacing of 
1/512. The probability of transition into a state 
I ~ 6 was not determined because the probability of 
transition into these states depends appreciably on 
the boundary condition as well as on other factors 

which are difficult to take into account (the octu­
pole potential and higher order potentials, a more 
accurate characteristic of the nuclear shape, the 
finite dimensions of the a.-particle, etc.) 

The calculation was performeJ for all the even­
even nuclei mentioned in the reviews, Refs. l and 
2, for r0 = 1.2, 1.3, and 1.4 x l0-13 cm, for positive 

and negative values of a. from 0.05 to 0. 25 in steps 
of 0.05. In order to illustrate the convergence of 
the series, the dependence of the functions y17 y2 

and Z 1 on a. at the point x* = b- l has been plot­
ted on Fig. l. The series con verges faster at 
smaller distances from the nucleus. The parameter 
involved in Eq. (7) and (8) (the energy E and the 
rotational constant B = 1i 2 /2]) and the experimental 
value of /;2 and /;4 were determined from the com­
piled experimental data.2 •3 The experimental values 
of these parameters are tabulated together with the 
results of the calculations. 'l'he references to the 
experimental work are given in the mentioned re­
views and are therefore not shown in the table. The 
value of /;4 given for the case of decay of l~a226 is 
()btained from Ref. 4. 

The values of a. tabulated in the third column 
were obtained by comparison with the experimental 
value of the relative probability of transition into 
the state with I = 2. For each nucleus and each sign 
of deformation the upper column corresponds to 
r0 = 1.4 x 10-13 em and the lower to r0 = l. 2 x 10-13 

em. The difference between these values of r0 is 

2,0 

FIG. l. Plot illustrating the converJ}ence of the series. 
Decaying nucleus Pu236 , r0 = 1.4 X 10 3 em. Curve l 
- k0 R0 y1 (x*), 2- k0R0 y2 (x*), 3 - z1 (x*). The relative 
order of the functions yl' y2 and z1 is Cl., o. 2 and o., 
respective! y. 

small and one cannot practically make a choice be­
tween them. For r0 = 1.3 x 10-13 em the value of a. is 

always in between the values corresponding to 
ro = 1.4 X 10-13 and 1.2 X 10-13 em. These values of 

a. are not tabulated. For an oblate nucleus with a 
given deformation, the probability of transition into 
a 2+ state is always considerably smaller than for a 
prolate nucleus. For an oblate nucleus with any 
value of o.,(:0.25, /;2 is, in most of the cases, 

smaller than its experimental value. On the other 

hand, the quadrupole moment data indicate a small 
deformation (o.;;;; 0.2D); therefore, the data on inten­
sity distribution in the a.-spectrum exclude the as­
sumption of oblate nuclei. This is in agreement with 
the experimental results on a.- y angular correlation 

in the case of a.-decay of Am241 from which it follows 
that the nuclei Am241 and Np237 are prolate.* 5 

The few exceptions are the nuclei for which the 
probability of transition into a 2+ state is relatively 
small (isotopes of Rn, Cm, and Cf). The assumption 
that these nuclei are oblate can be made to agree -
generally speaking- with the intensity distribution 
of the a.-spectrum although this yields deformations. 
The quadrupole moment data on these nuclei would 
permit one to make a definite conclusion about their 
shape. The table shows the negative values of a. 
only in those cases for which the assumption on ob­
late nucleus can be made to agree with the intensity 
of transition into the 2+ state. 

*An adiabatic rotation of the nucleus was assumed in 
Ref. 5. This assumption does not agree with what actu­
ally happens, but one can show that the nuclear rotation 
does not substantially change the relative phase between 
the l = 2 and l = 0 waves, a phase which is important for 
the determination of the sign of the deformation. 
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I £, Mev; B, kev; I 
Daughter nucleus t 2 (exp.) 

Rnzzo 5.68 40 
0.05 

Rnzzz 4. 78 31 
0.06 

Ra222 6,34 18.2 
0.27 

Ra224 5.42 14 
0.40 

Razzs 4.68 11.2 
0.30 

3.99 10 
Razzs 0,32 

5.89 11.6 
Thzzs 0.45 

5.32 10 
Thzzs 0.47 

4.76 8.7 
Th23o 0 31 

4.50""8.3 
Th232 ""0. 37 

4.18"-'8. 3 
Th234 r-...0.30 

6 ,19"'-'8.3 
lJ23o 0.16 

5.75 7.5 
lJ232 0.25 

5.50 7.8 
lJ234 0.39 

I 

I I 
5 .1G 7.5 

lJ236 0.32 

V. M. STR UTIN SKII 

+0.07 } 10-4 
+0.08 
-0.14 } 7 ·10- 5 
-0.15 

+0.08 5-10-5 
0.10 

-0.15 3 ·10-5 
0.20 

+0.13 
0,15 4 ·10- 3 8-10-3 

+0.17 
0.20 1Q-2 2.8·10-3 

+0.15 
0.17 6·10-3 2.6·10-3 

+0.17 
0.21 6·10-3 

+0.17 
0.20 1.4·10-2 

+0.18 
0.21 1. 6.10-2 4.4·10-3 

+0.14 
0,15 6 ·10-3 4-10-3 

+0.16 
0,18 0.07[6] 10-2 

+0.14 
0.15 6-10-3 

+0.08 
0.09 

+0.10 
0.12 4-10-3 

lJ233 
0.17 [7] 

+0.14 
0.16 10-Z 1.2·10-3 

lJ23j 
0.12 ['] 

I 
+0.13 8·10-3 1.2·10-3 

0.15 
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l I E, Mev; B, kev I 
Daughter nuc eus ~2 (exp.) 

/1.90 7.3 +0.12 
U23s 0.25 (). 13 

6.11 7.3 +0.12 
Pu23s () ~i6 0.13 

5.80 7.2 +0.12 
Pu240 0.33 0.13 

6.75 7.0 +0.10 
Cm242 0.28 0.11 

-0,20 
0,25 

6.15 6.2 +0.07 
Cm246 0.11 0.08 

-0.09 
0.10 

6.12 6,2 +0.07 
Cm24S 0,11 0.08 

-0,12 
0.111 

7.22 7.0 +0.08 
Cf25o 0.18 0.08 

-0.12 
0.14 

The fourth column ( (J.Q) of the table shows the val­

ues of (J. determined from quadrupole moments ob­
tained from experiments on Coulomb excitation of 
rotational levels, for T0 = 1.4 x 10-13 em. The param­
eter (J.Q is obtained using the formula: 8 

At the present time the quaurupole moment of the fol­
lowing even-even nuclei has been measured: Th232 

(Qo = 5.6 barns6) and U238 (Qo = 6.9 barns6 and 9.5 
barns 7). The table shows both values for U238 • 

Q0 = 6.9 barns corresponds to o. = 0.07. This value 

differs appreciably from the o. determined from ().-de­

cay. The discrepancy is also very large in the case 
of Th232 • In the other case, the deformation param­
eter has been determined from the quadrupole mo­
ment of the neighboring odd isotopes.7 These iso­
topes are shown in the table. The dependence of the 
deformation parameter on the quadrupole moment 
agrees qualitatively with the measured nuclear quad-

~. (calc.) ~. (exp.) 

0.11 [7) 
0.07 [6] 3-10-3 

10-2 5 ·10-4 

1.3-10• 2 

l 6-HP >t0-3 
( 

} 1.5-10-2 

} 2-10-3 
I 

~ 1.5·10-3 

} 1()-3 

l 1()-3 
J 

I } 4 ·10-3 

>3·10-3 

} 3 ·10-3 

rupole moments. The following columns list the cal­
culated and experimental values of the transition 
probability into the 4+ state. In all the cases the 
agreement with the experimental data on decay into 
a 4+ state is satisfactory. The discrepancy between 

the experimental and the theoretical values of .;. is 
within t"easonable limits and can be fully accounted 
for by the inaccuracy of the boundary condition (it is 
shown in the appendix that the inaccuracy of the 
boundary condition can change .;. by a factor of 
"" e). Fig. 2 shows the dependence of .;2 on o. for the 
decays of Cm242 (experimental value .;2 = 0.35) and 
Ra222 , for To = 1.4 x lO-u em (for the latter nucleus 

the intensity of transition into a 2+ state has not 
been determined experimentally). Let us note that 
the curves showing the dependence of .;2 on o. turn 
out to be close to each other for all the isotopes of 
the same element, but are quite different for differ­
ent elements. 

Generally speaking, the nuclear deformation can 
also be determined from the absolute probability of 
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~z 

0.9/J 

1!.00 

IJ.2D 

0.05 0,15 1«1 0.25 

FIG. 2. Relative probability of transition into an I= 2 
state vs. deformation of the daughter nucleus. The fol­
lowing parent nuclei are shown: l - Cm242 , ex. > 0; 2 
- Cm242, ex. <O; 3- Ra222, ex.> 0; 4- Ra222, cx.<O. 

u.-decay - the presence of deformation leads to an 
increase of the Coulomb barrier penetrability. This 
effect is, however, relatively small as compared to 
the spherical case (the decay probability increases 
by a factor of "-' lO). The factor in front of the ex­
ponential is determined either with the same accu­
cacy or less accurately; this method does not, there­
fore, permit the determination of the deformation with 
any accuracy. 

In conclusion the author expresses his gratitude 
to C. B. Mostinskaia who carried out the calcula­
tions with an electronic computer. 

APPENDIX 

l. DEPENDENCE OF TilE WAVE FUNCTION 

ON THE BOUNDARY CONDITION 

AT THE NUCLEAR SURFACE 

In the neighborhood of the nucleus one can neglect 
the curvature of the u.-particle orbit. On a sphere~ 
surrounding the nucleus, of radius x 0 = 1 + u. equal 
to the major semi-axis of the nucleus (we consider 
prolate nuclei), the wave function can be written in 
the form 

Xo 

·~rE=z(B)exp{-~ xdx} 
X 0-.1x (A.1) 

where x(S}= x [x(ry), ry] is the wave function at the 

nuclear surface and L1x (-&) = c; sin2 -&. Let us expand 
the function (A.1) is Legendre polynomials: 

l)il " 2: = LJ azPz (cos-&), 
l (A.2) 

11: 

az,--...-(2£+ l)~l)i~~Pz(cos&)sin&d&. 
0 

Only small angles are important in (A.2), because 
practically c;x.R "-' 4-5 »I· Substituting, in the ex­
ponent, &2 for sin2 & and a Bessel function for the 
Legendre polynomial, we find: 

0) 

az ~ (2l + 1) ~ e -cv' J 0 [ (z + ~) & J ~) d& 
0 

~(2l+1)exp[-l(l+ 1)j4c], 
(A.3) 

where c = c;x.R + o, o being a correction due to the 
function x(&). If the function x(&) is not too abrupt, 
o ~ l. The quadrupole potential can be neglected in 
the analysis of the dependence of the intensity of 
rotational state excitation on the boundary condition. 
In the region under the barrier one can therefore 
write the wave function in the form 

'f (x,&) = ~ azRz(x) Pz(cos &), (A.4) 

where Rz are the usual Coulomb radial functions 
[Rz (x0 ) = 1]. The relative probability of excitation of 
a spin I rotational level is equal to 

R2 (x*) E = a2_I __ 
·J I R~ (x*) 

=(21 + 1)exp[-/(l + 1) (2~ +d)] =(21 + 1) 

xexp{-1(1+ l)(zs~Ro + 2(s}Ro)2 +d},(A.-5) 
x* 

1 ~ (~ + x-2) 1 ( 2 rr )' 
d = -k R ,, dx = -k R V -- + -2- ~b . 

co o (v0 - 1) " o o \ b 
x, 

For most nuclei {J rv 0.1, b rv 5. Here d = l.5/k0 R0 • 

The factor o/2 ( c;x.R0 ) 2 which depends on the bound­
ary condition on the nuclear surface is substantial 
for l ~ y2 c;xR0 • For o ~ 1 and I = 2, the correction 
which is due to the inaccuracy of the boundary con­
dition does not exceed'"" 20%. For I= 4, the ~/ cal­
culated with an approximate boundary condition can 
be several times larger or smaller than the true 
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value. The probability of transition into higher 
states depends appreciably on the boundary condi­

tion. 

2. MINIMUM ANGULAR WIDTH 
OF THE WAVE FUNCTION 

The action of centrifugal forces and the energy 
loss of the a-particle (nuclear rotation) lead to a fi­

nite width of the wave function on the sphere of exit 
from underneath the barrier, even for a 8-function 
distribution of a-particles on the sphere l. The in­
tensities of the fine-structure lines in the a-spec­
trum for a deformed nucleus cannot, therefore, ex­
ceed the values given by the simple Gamow formula, 
which does not take into account the nuclear defor­
mation. The minimum width of the wave function can 
be obtained either by using formula (A.5), putting 

c = oo, or directly from Eq. (10), by letting v1 = 0 and 
y1 (x0 ) = oo in the Ricatti equation. We obtain 

The angular half width .&* of the wave function is 

determined from sin .&* ""y k0H.0y1 (x *); for the values 
of d mentioned above and for k0 R0 "" 8, it is equal to 
"' 40°. As can be seen from Eq. (10), the quadrupole 

potential can only decrease the value of y1 (x*) and 

leads, therefore, to an additional increase of the an­
gular width of the wave function and to a decrease 
of the probability of transition into excited rota­
tional states. 
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The field produced by a charge moving parallel to the axis of a cylindrical channel in a 
dielectric is determined. The field and energy losses of the charge are computed for vari­
ous assumptions concerning the medium. 

THE PASSAGE OF A CHARGE along a channel 
in a dielectric was first considered by Ginzburg 

and Frank.1 These authors calculated the field pro­
duced by a point charge moving with uniform motion 
along the axis of a cylindrical channel of radius a, 
filled with a dielectric 8 1 (cu) in a medium of dielec­
tric constant 8 2(cu). 

Problems connected with the passage of a charge 

along the axis of a channel in a dielectric have also 
been treated by Bohr, 2 Schoenberg, 3 Huybrechts, 3 •5 

and Sitenko 6 (problems of this type have also been 
considered in Ref. 7). 

In problems concerning the generation of electro­
magnetic radiation, focusing of charged particles in 
a cylindrical channel, and the theory of Cerenkov 
counters, it is of interest to consider the case in 


