where

$$X = x (1 - x), \quad Y = y (1 - y),$$

 $Z = z (1 - z), \quad T = t (1 - t).$

We will consider that the sum

$$A = \alpha + \beta \ln \frac{k^2}{m^2} + \gamma \left(\ln \frac{k^2}{m^2} \right)^2$$
 (2)

is the asymptotic form of the function f if

$$\lim \left[f\left(k^{2} / m^{2} \right) - A\left(k^{2} / m^{2} \right) \right] = 0^{t} as \quad k^{2} / m^{2} \to \infty.$$
 (3)

Then the asymptotic form of the Green function of the photon is, in the approximation considered

$$iG_{\mu\nu} \sim \frac{k^2 \delta_{\mu\nu} - k_{\mu}k_{\nu}}{k^4} \left\{ 1 + \frac{c^2}{12\pi^2} \left(\ln \frac{k^2}{m^2} - \frac{5}{3} \right) + \left[\frac{e^2}{12\pi^2} \left(\ln \frac{k^2}{m^2} - \frac{5}{3} \right) \right]^2 + \frac{e^4}{64\pi^4} \left(\ln \frac{k^2}{m^2} + \frac{139}{54} - \frac{22}{3} \zeta(2) + 4\zeta(3) \right) \right\},$$
(4)

where $\zeta(2)$ and $\zeta(3)$ are the Riemann Zeta functions [see Eq. (5.10) of Ref. 1].

The coefficient $e^4/64 \pi^4$ coincides with the coefficient obtained earlier by Jost and Luttinger² by a different procedure.

We give the numerical value of the constant contained in the asymptotic form:

$$C = \frac{139}{54} - \frac{22}{3}\zeta(2) + 4\zeta(3) = -4,680\,548...$$
 (5)

Taking the constant C into account does not change the structure of Eq. (30) of Ref. 3 for the asymptotic form of the Green function of the photon, but the charge e which comes into this formula is given now by the expression

$$e^{2} = e_{0}^{2} \left/ \left[1 + \frac{5}{3} \frac{e_{0}^{2}}{3\pi} + \frac{e_{0}^{4}}{4\pi^{2}} 4,68 \right] \right.$$
 (6)

The author is very grateful to N. P. Klepikov for help in this work, and also to V. G. Solov'ev for valuable advice. ³ N. N. Bogoliubov and D. V. Shirkov, J. Exptl. Theoret. Phys. (U.S.S.R.) **30**, 77 (1956), Soviet Phys. JETP **3**, 57 (1956).

Translated by **G. E.** Brown 262

Reduction of the Two-Nucleon Problem to a Single-Nucleon Problem in the Nonrelativistic Range

IU. V. NOVOZHILOV Leningrad State University (Submitted to JETP_editor February 25, 1957) J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1262-1264 (May, 1957)

WE SHALL CONSIDER the interaction between two nucleons at the fixed points \mathbf{r}_1 and \mathbf{r}_2 and shall attempt to express the renormalized two-nucleon matrix elements in terms of renormalized single-nucleon matrix elements. We shall use as a basis the papers of Chew and Low¹ and Wick², in which single-nucleon problems are treated.

The energy operator is

$$H = H_0 + U_1 + U_2, \tag{1}$$

$$U_{A} = \sum_{\mathbf{k}} V_{\mathbf{k}}^{0}(A) e^{i\mathbf{k}\mathbf{r}_{\mathbf{A}}} a_{\mathbf{k}} + V_{\mathbf{k}}^{0}(A) e^{-i\mathbf{k}\mathbf{r}_{\mathbf{A}}} a_{\mathbf{k}}^{+}; \quad A = 1, 2.$$
(2)

Here $V_{\mathbf{k}}^{o}(A)$ contains the operators σ_{A} and τ^{A} , which apply to nucleon A; the rest of the notation is taken from Ref. 1.

The state Ψ_{σ} with two interacting physical nucleons is an eigenfunction of the Hamiltonian (1):

$$H\Psi_{\sigma}(1, 2, \bar{a}) = [2E_0 + E_{\sigma}(\rho)] \Psi_{\sigma}(1, 2, \bar{a}), \quad (\rho = r_1 - r_2),$$
(3)

where E_0 is the nucleon self-energy and $E_{\sigma}(\rho)$ is the static interaction energy of the nucleons. The symbol $\sigma \equiv (l', S', l'_3, S'_3)$ denotes the eigenvalues of the total spin, the total isotopic spin, and their three projections. In the representation where the creation operator a_k^+ is equivalent to multiplication by \overline{a}_k *i.e.*, $a_k^+ \Psi = \overline{a}_k \Psi$, the state vector Ψ_{σ} will be a function of \overline{a}_k .

As the basic set of functions we shall use the products of single-nucleon state vectors $F_{\alpha\beta}(1, 2, \overline{a}) = F_{\alpha}(1, \overline{a})F_{\beta}(2, \overline{a})$, where α and β are spin and isotopic spin indices. $F_{\alpha}(1, \overline{a})$, which describes a nucleon in a meson cloud, is the solution of the Schroedinger equation

1030

¹M. Gell-Mann and F. Low, Phys. Rev. **95**, 1300 (1954).

² R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1950).

$$(H_0 + U_1) F(1, \bar{a}) = E_0 F(1, \bar{a}).$$
(4)

It can be shown³ that for $\rho \to \infty$ the products $F_{\alpha\beta}(1, 2, \overline{a}) = F_{\alpha}(1, \overline{a}) F_{\beta}(2, \overline{a})$ are solutions of (3) and are subject to the orthogonality condition

$$(F_{\alpha\beta}(1, 2, \overline{a}), F_{\alpha'\beta'}(1, 2, \overline{a})) = \delta_{\alpha\alpha'}\delta_{\beta\beta'}.$$

However for finite ρ these products are nonorthogonal functions of ρ .

We shall obtain Ψ_{σ} in the form

$$\Psi_{\sigma} = \Phi_{\sigma} + \chi_{\sigma},$$

where $\Phi_{\sigma} = \sum c_{\alpha\beta}^{\sigma} F_{\alpha\beta}$ coincides with Ψ_{σ} for $\rho \to \infty$. When χ_{σ} is expanded in eigenfunctions of the total Hamiltonian H we shall restrict ourselves to the states Ψ_{μ} (without real mesons) and Ψ_{μ}^{q} (with one real meson) so that

$$\Psi_{\sigma} = \frac{1}{(\Psi_{\sigma}, \Phi_{\sigma})} \left[\Phi_{\sigma} - \sum_{\mu \neq \sigma} (\Psi_{\mu}, \Phi_{\sigma}) \Psi_{\mu} - \sum_{\mu, q} \frac{1}{q_{0}} (\Psi_{\mu}^{q}, [H - 2E_{0} - E_{\sigma}] \Phi_{\sigma}) \Psi_{\mu}^{q} \right].$$
(5)

In the nonrelativistic approximation where small distances are unimportant Ψ_{σ} in the right-hand side can be replaced by Φ_{σ} . The principal difficulty here lies in the calculation of the matrix elements

$$(\alpha\beta \mid L \mid \alpha'\beta')$$

$$= (F_{\alpha}(1, \bar{a}) F_{\alpha}(2, \bar{a}), L(a, a^{+}) F_{\alpha'}(1, \bar{a}) F_{\alpha'}(2, \bar{a}))$$
(6)

without being able to use the explicit single-nucleon states $F(1, \overline{a})$ and $F(2, \overline{a})$.

We introduce a different notation for the meson field variables in $F_{\alpha'}(1, \bar{\alpha})$ and $F_{\beta'}(2, \bar{\alpha})$, as follows:

$$F_{\alpha'}(1, \bar{a}) = F_{\alpha'}(1, \bar{a}_1), \quad F_{\beta'}(2, \bar{a}) = F_{\beta'}(2, \bar{a}_2)$$

(without any special assumptions). Then, for example, the matrix element (6) with L = 1 will be written as

$$F_{\alpha}^{*}\left(1, \frac{\partial}{\partial \bar{a}_{1}} + \frac{\partial}{\partial \bar{a}_{2}}\right) F_{\beta}^{*}\left(2, \frac{\partial}{\partial \bar{a}_{1}} + \frac{\partial}{\partial \bar{a}_{2}}\right)$$

$$\times F_{\alpha'}(1, \bar{a}_{1}) F_{\beta'}(2, \bar{a}_{2}) |_{\bar{a}_{1}} = \bar{a}_{2} = 0.$$
(7)

Assume now that a meson cloud interacts much more strongly with its "own" nucleon than with another nucleon. Then in $F_a^*(1, \partial/\partial \overline{a}_1 + \partial/\partial \overline{a}_2)$ the operator $\partial/\partial \overline{a}_2$ will be small compared with $\partial/\partial \overline{a}_1$ and in $F_{\beta}^*(2, \partial/\partial \overline{a}_1 + \partial/\partial \overline{a}_2)$ the operator $\partial/\partial \overline{a}_1$ will be small compared with $\partial/\partial \overline{a}_2$. Since for small \overline{a}_2

$$F(1, \bar{a}_1 + \bar{a}_2) \approx F(1, \bar{a}_1) + \sum_{\mathbf{k}} a_{2\mathbf{k}}^+ a_{1\mathbf{k}} F(1, \bar{a}_1) + \dots,$$
(8)

we obtain when we limit ourselves to the linear term in (8)

$$(\alpha\beta \mid \alpha'\beta') = (F_{\alpha}(1, \bar{a}_1) F_{\beta}(2, \bar{a}_2), (1 + \hat{N}) F_{\alpha'}(1, \bar{a}_1) F_{\alpha'}(2, \bar{a}_2)),$$
(9)

$$N = \sum_{\mathbf{q}} [a_{1\mathbf{q}}^+ a_{2\mathbf{q}} + a_{2\mathbf{q}}^+ a_{1\mathbf{q}}], \qquad (10)$$

with $[a_{1q}, a_{2q}^+] = 0$, $[a_{1q}, a_{1q'}^+] = \delta_{qq'}$ etc.

In general, for the calculation of (6) all a_k and a'_k must first operate on the functions $F(1, \overline{a})$ and $F(2, \overline{a})$, following which (7) and (8) will be used. For example,

$$\begin{aligned} & (\alpha\beta | H - 2E_0 | \alpha'\beta') = (F_{\alpha} (1, \bar{a}_1) F_{\beta} (2, \bar{a}_2), \\ & (1 + \hat{N}) [U_1^+ (\bar{a}_2) + U_2^+ (a_1)] F_{\alpha'} (1, \bar{a}_1) F_{\beta'} (2, \bar{a}_2)), \end{aligned}$$
(11)

where $U_1^+(a_2)$ is the annihilation component of the operator U_1 with annihilation operators a_{2k} . The right-hand sides of (9) and (11) can be expressed in terms of the single-nucleon matrix elements $(F_{\alpha}, V_k^0 F_{\alpha'})$ and $(F_{\alpha}^q, V_k^0 F_{\alpha'})$, where F_{α}^q is the state with a nucleon and one (real) meson q. The first of these matrix elements is known to be $(u_{\alpha}, V_k u_{\alpha'})$, where u is the spin-isotopic spin function of the bare nucleon and V_k contains the renormalized charge f. The second matrix element is associated with the meson-nucleon elastic scattering amplitude. The rule for calculating expressions such as (6) can be expressed as follows. In the coordinate representation the annihilation component $\varphi^{(+)}(\mathbf{r}_1)$ of the meson operator $\varphi(\mathbf{r}_1)$ is

$$\varphi^{(+)}(\mathbf{r}_{1}) = \int \Delta^{(+)}(\mathbf{r}_{1} - \mathbf{r}) \frac{\delta}{\delta \varphi^{(-)}_{(\mathbf{r})}} d^{3} \mathbf{r},$$
(12)
where $\Delta^{(+)}(\mathbf{r}_{1} - \mathbf{r}) = [\varphi^{(+)}(\mathbf{r}_{1}), \varphi^{(-)}(\mathbf{r})],$

where $\varphi^{(-)}(\mathbf{r})$ is the creation component of $\varphi(\mathbf{r})$. If τ_1 and τ_2 are the regions occupied by the meson clouds of nucleons 1 and 2, $F(1, \overline{a})$ will depend on $\varphi^{(-)}(\mathbf{r})$, where \mathbf{r} lies in the region τ_1 , and $F(2, \overline{a})$

will depend on $\varphi^{(-)}(\mathbf{r})$ in the volume τ_2 . Then division of the operator $\partial/\partial \overline{a}_1 + \partial/\partial \overline{a}_2$ in $F_{\alpha}^*(1)$ [Eq. (7)] into a larger part $\partial/\partial \overline{a}_1$ and a smaller part $\partial/\partial \overline{a}_2$ corresponds to division of $\varphi^{(+)}(\mathbf{r}_1)$ into two terms – an integral over τ_1 (the larger part) and an integral over τ_2 (the smaller part).

Equation (8) is not an expansion with respect to renormalized charge because the single-nucleon matrix element $(F_{\alpha}^{q}, V_{\mathbf{k}}^{o}F_{\alpha}^{i})$ cannot be calculated by ordinary perturbation theory. Its value must either be calculated exactly or obtained from pion-nucleon scattering experiments.

¹G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

²G. C. Wick, Revs. Modern Phys. 27, 339 (1955).

³H. Ekstein, Nuovo cimento 4, 1017 (1956).

Translated by I. Emin 263