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AS IS KNOWN (see, for instance, the review by 

Feinberg\ the influence of the surrounding 
medium on the collision of particles with a small 
longitudinal momentum transfer can become consid

erable even for high energies. Furthermore, the in
fluence of the surrounding medium must necessarily 
be important in the higher order perturbation calcu
lations because, in the integration over the 4-mo
mentum of virtual photons, one necessarily has to 

include the wavelength region for which the pres
ence of the neighboring atoms cannot be ignored. 

This was pointed out for the first time by Landau 
and Pomeranchuk 2 who noted that the magnitude of 

the radiative corrections is strongly influenced by 
the multiple scattering of the electron in the me
dium. Ter-Mikaelian3 noted that the radiative correc
tions should be especially strongly influenced by 

the deviation, for soft quanta, of the dielectric sus
ceptibility 8 ( w) from unity. 

In view of this, it would be of some interest to 
construct a covariant Feynman-Dyson perturbation 
theory for a phenomenological quantum electrody
namics in a medium. 

A non-covariant formulation of quantum electrody
namics was given by Ginzburg 4 and Sokolov5 and 
was later expanded by Watson and Jauch 6 • For the 
construction of a covariant perturbation theory in a 

medium, it is convenient to use the formulation of 
phenomenological quantum electrodynamics proposed 
by Tamm, in which the properties of the medium are 
described by the dielectric and magnetic suscepti
bility tensor 8 vf..pa which relates. the field tensor 
F vf.. to the induction tensor H vt..= 

( l) 

In homogeneous isotropic matter, 8vf..pa has the form 

Here up is the 4-velocity of the medium, 11- is the 

magnetic susceptibility, x = 811- - l, x and 11- are in
variants; the Feynman notation is used. If the poten
tial of the electromagnetic field is introduced in the 
usual way 

(3) 

and the components are constrained to the auxiliary 

condition 

(4) 

then, from the field equation 

a,,H vi.= - ji. (5) 

and from (2) - (4) one obtains the following equation 
for the potential 

In the Heisenberg representation of quantum the
ory, the field operators satisfy the same equation 
(5); the commutation relations for the free field 
operators have been found in Ref. 6. The rules for 
the computation of the scattering matrix elements 
can be easily obtained, for instance by the method 
of Galanin 8 • But, instead of the usual Green func
tion for photon, the formulae will involve the Green 
function for the free equation (6), determined by 

(J.-1 (a~+ x (upap)2) U\cr + xu)ycr) G'J..v (x, x') = 

Changing to the momentum representation, it is 
easy to obtain the following expression for the 
Green function: 

G'J..v (x, x') = (2rtr2 I d4kv- (a) - _x_ u u,l 
~ .v 1 + Y.. v "/ 

X { k~ + x (upkp) 2 } - 1 exp ik (x- x'). 

(7) 

(8) 
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The choice of the integration path with respect 
to the poles is determined in the following way: for 
positive frequencies, it is required that an infini
tesimal absorption occur. For negative frequencies, 
the contour is chosen in such a way as to make the 
theory symmetric with respect to past and future. 

It is also necessary to note that the denominator 
of the integrand in (8) vanishes if both up k P and kp 
tend to zero. This is due to the fact that perturba
tion theory is not applicable to soft quanta and 
leads to singularities in the expressions for the ra
diative corrections ("infrared catastrophe"). In 

order to obtain converging expressions, it is nec
essary to limit, in a covariant way, the integration 
region from the soft-quanta end. In analogy with 
perturbation theory in vacuum, let us introduce an 
additional term in the denominator of the Green func
tion (8)- a constant A2 which cuts off the infrared 
region. The magnitude of >.. depends only on the con
ditions of applicability of the perturbation theory 
and can be left unspecified if one is interested only 
in final results independent of >... Taking this into 
account, the final expression for the Green function 
can be obtained in the following form 

Gi.v (x, x') = (2rr)-2 ~ d4.i?_gii. {k~ + x (upkp)2 - A2 ) -lgiv exp ik (x- x'), 

gi).. = eia(i'l").a- U)..Ua [1- (1 + x)-'l•]); eii.eiv == ai.v; ei)..ek).. = aik• 
(8') 

This way, the matrix elements can be computed 
using the standard diagram technique, where an in
ternal photon line corresponds in the momentum rep
resentation, to the factor 

and the vertices at its ends correspond to the 
operators 

To obtain the factor corresponding to a vertex 

(9) 

( lO) 

with an exterior photon line, it is convenient to make 
use of a method mentioned by Feynman in a footnote 
in the second section of his paper 9 • After integra
ting (8) over k4 it is easy to see that the factor cor
responding to an internal line can be interpreted as 
the result of exchange by real photons of all possi
ble momenta and polarizations. Since an external 
line corresponds to emission (absorption) of a real 
photon with definite momentum and polarization, it 
is easy to determine the relationship between the 
factors. The result can be formulated in the follow
ing way: in the momentum representation, a vertex 
with an external photon line corresponds to the 
operator 

giv Yv [2k4 + u42 (upkp) X+ u4 (upkp)2ax I a (upkp)]-'1•. 

( ll) 

Here, in contrast with (9) and (lO), the components 
k P are related by 

(12) 

which has to be considered as a definition of the 

dependence k (k4 ). The other factors of the matrix 
element have the same form as in the case of vac
uum. Let us illustrate the application of the theoret
ical apparatus with an example of Cerenkov radia
tion. The matrix element of the process is 

S(l) = - e (2rr)4 (u2, g iv YvUl) 

{ ( 1 ax )\--'1• 
X 2w 1 +X+ 2 w aw J a (Pl + kl - P2)· 

(13) 

The emission probability of a non-polarized photon 
by a non-polarized electron can be obtained in the 
form (medium at rest): 

dW =[1. 4~ dw~ { 1- ~-2 (1 + x)-1 

+ p; 1 : X - 7;2 [X+ 1 ~ x]} • ( 14) 

The energy radiated by the electron per unit time is 

equal to 
")max 

W = :: [1.~ ~ wdw {1- ~-2(1 + x)-1 

Wmin (15) 

The conservation laws determine the direction of 
the radiation and the limits of integration 

cos & = (1 I~ Yl + x)- (w I 2mp) Yl- i3 2 xI Y 1 + x. 

('16) 

The results coincide completely with those of Refs. 
4 and 5 for f1 = 1 and go into the classical formula 
as the electron's recoils are neglected. 

As a conclusion, I wish to express my gratitude 
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to E. L. Feinberg and 1\:1. L. Ter-~1ikaelian for con
stant interest in this work and for valuable discus
sions. 
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ONE OF THE possible explanations of the decay 
of K+-mesons into two and three rr-mesons con

sists in the supposition that spatial parity is not 
conserved in weak interactions 1. If one accepts 
this hypothesis then the question arises: should 
charge parity and parity relative to reflection in 

time be conserved in weak interactions. As is well 
known 2 , the connection between spin and statistics 
requires that all interactions be invariant under the 

product of the three transformations: reflection of 
the three spatial coordinates /, reflection in time T 
and charge conjugation C, i.e., symbolically 
lTC = l. Therefore 3 with violation of spatial par
ity in weak interactions (/-/= l) there are three pos
sibilities: I) weak interactions are invariant under 
reflection in time (T = l), but are not invariant un
der charge conjugation, so that /C = l; II) weak in
teractions are invariant under charge conjugation 
(C = l) but are not invariant under reflection in 
time and IT = l; III) weak interactions are not in-

variant under either charge conjugation or reflec
tion in time, but lTC = l. If one accepts the last 
possibility, then the fact that a i('l-meson with a 
long lifetime exists 4 would appear to be a pure c a
incidence in so far as the argument of Gell-Mann 

and Pais 5 , on the basis -of which it was predicted, 
and would be valid only under conservation of ei
ther charge parity or -parity relative to reflection in 
time. This forces us to discard the third possibility 

and consider only the first two. 
In this article we consider what physical phe

nomena could occur with either of these alternative 

possibilities. 
The first of these possibilities, as remarked by 

Landau6 , corresponds physically to the assumption 
that all interactions are invariant under simultan
eous interchange of right and left and change from 
particle to antiparticle. The physical significance 
of the second assumption is that all interactions 

remain unchanged only if the motion proceeds back
wards in time together with the transition from right 
to left. 

We consider first scheme I, i.e., when, together 
with violation of spatial parity, invariance relative 
to reflection in time is conserved. At t-> - oo let 
there be a system of particles in state a, with par
ticle momenta Pa and a mean value of spins Sa· 

Let, further, as a result of interaction, this system 
go into a different system of particles (at t-> oo) 
with momenta Pb and mean values of the spins sb. 

From the invariance under reflection in time it 
follows 7 that the transition matrix element 

S~b(Pa• sa; Pb• sb) is connected in the following 
way with the matrix element of the inverse proc

ess Siu(Pb• sb; Pa• sa) 

S~b (Pa• sa; Pb• sb) = S~a (- Pb- sb; - Pa• -sa)· 
(l) 

The matrix element Sba• viewed as a function of 
its arguments Pa• Pb• etc., does not have, in gen
eral, the same functional form as the function Sab. 

Thus, we cannot extract any help directly from Eq. 
(l). However, if the transition a-> b is considered 
to go as a result of a weak interaction, then in the 
first non-vanishing approximation of this interac
tion, the relation of detailed reversibility holds: 

Sab (Pa• sa; Pb, sb) =- s;a (pb, sb; Pa' sa)· (2) 

[For the validity of (2) it is important that the 
transition proceed as a result of a weak interaction, 
but it is not necessary that the particle motion as a 
whole in the initial or final states be describable 


