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An expression is derived for the Hall "constant" in strong magnetic fields; it is valid 
for semiconductors th~t contain narrow bands. 

1 A RECENTLY PUBLISHED work 1 explains 
• the asymptotic behavior of the resistance and 

Hall "constant" of metals in strong magnetic fields. 
In particular, the following expression is obtained 
for the Hall "constant": 

(l) 

(n1 and n2 are the electron and hole densities). The 
expression is valid in those cases in which only 
closed equal-energy surfaces play a role. An analo
gous expression has also been obtained for semi

conductors 2 • It reduces to the usual expressions in 
the special cases of a donor (n2 = 0) and of an ac
ceptor (n, = 0) semiconductor. 

Formula (l) fails for an intrinsic semiconductor, 
since in this case n 1 = n2 • The subject of the pres
ent communication is the derivation of an expres
sion for the Hall constant that is valid for intrinsic 
semiconductors and is especially effective for semi
conductors with narrow bands. 

For simplicity, a semiconductor is considered that 
possesses the energy spectrum represented in the 
figure. It is supposed that at T = 0, bands a and b 
are completely filled, band c empty. Upon increase 
of temperature, electrons from band b get into band 
c. The distance between the bottom of band b and 
the top of band a is so great that excitation of elec
trons from band a is known to be negligible. This 
is a representative mode I of an intrinsic semicon
ductor. By narrowing band b, we pass over to a do
nor semiconductor. Generalization to the case of 
several bands located close together, and likewise 
passage to an acceptor semiconductor in such a 
scheme, are trivial. 

A considerable simplification results from the as
sumption that in band b there is only one open sur
face, and that in band c the open surfaces are lo
cated so high that excitation of electrons into these 

states may be neglected. A similar relation must 
clearly exist if band b is appreciably narrower than 
band c. 

2. The treatment presented in Ref. l shows that 
in our case the conductivity matrix Uik(ll) has a 
form determined by expression (24) of that reference. 
This means that the Hall "constant" R in large 
fields is determined by-

(2) 

It should be mentioned that in consequence of the 
smallness of the numbers of conduction electrons 
in semiconductors, use of formula (2) in this case 
is permissible at larger magnetic fields than in the 
case of metals. 

In accordance with Eq. (25) of Ref. l, the asymp
totic expression for u xy may be written in our case 
in the following form: 

2ce {[ ' Gxy=~-JT jf0 (s)V(s)ds 
0 

e, oo (3) 

- ~ f~ (z) V (s) ds + ~ f~ (:::) V (s) ds}. 
e' 

Here 8o is the value of the energy on the open sur
face; the values 8 1 and 8 2 are evident from the fig
ure (see below); V(d is the volume inside the sur
face dp) = 8. * Upon integrating (3) by parts, we 
get 

crxy = (2ce / Hh3) {- fo (s0) [V (::: 0 - 0) + V (s0 + 0)] 
E 0 tt 

+ ~ f 0 ( s) V' (s) ds - ~ f 0 ( s) V' ( s) ds 
0 eo 

+ ~ fo (s) V' (s)ds}. 
<z 

*The exact definition of V(8) is evident from (22') 
of Ref. l. 
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Here 

V (s 0 - 0) = lim V (s); V (s0 + 0) cccc lim V (s). 
£~ £~ E;....---;.Ett 

(e<e0 ) (e_>e 0 ) 

and we have used the fact that V(O)= V(e 1 ) = V(e 2 ) 

= 0. Obviously 2h- 3[f';,(e 0 - 0) + V(e 0 - 0)] = N is 
the number of states in band b, and 

2V' (s)lh3 = { n (:) ~ < s s0 ; s~ < s: 
-ll(c) -o 0 <s<_:s1, 

where n(e;) is the density of states per unit energy 
inte.rval. We recall that m > 0 for E < e 0 ; but that 
for e; 1 > E > e 0 , m < 0. From the normalization con

dition we have 

e, "" 

\ f 0 ( s) n ( s) ds + \ f 0 ( s) n ( s) ds == N 
0 e 2 

Thus 

R = 1 I ecN (1- fo (s0)); 

fo (s0) = [exp {(s0 -(J. (T)) I kT} + 1]- 1 . 
(4) 

If the band b is broad, the chemical potential p.( T) 
is located approximately in the middle of the forbid
den band 3 • Then e(<,-tJ.)/hT~ 1, and expansion in 
the exponential gives 

R = e(tJ.-e,)hT / ecN. (5) 

We are assuming that the distance on an energy 
scale from the open surface in band b to the chemi
cal potential is less than the distance from p. to an 
open surface in band c. The appropriate generali
zation to take account of an open surface in band c 

is carried out in an obvious manner. The formula 
(5) obtained corresponds to an intrinsic semicon

ductor. 

Qualitatively, the formula is evidently valid not 
only in the case of a single open surface, but also 
when a layer of open surfaces is narrow in compari
son with the width of the band. 

Passage to the limit of a donor level, € 1 = 0, is 
accomplished as follows: 

e, 

\ f0 (s) n (s) ds = Nfo (0); fo (so) = fo (0). 
0 

Hence (cf. for example, Ref. 4) 

1 t> 

R= . ; N(T) =\ f0 (s)n(s)ds. 
ecN (7) J 

e' 

Here N is the number of electrons in the conduction 
band. 

If the band b is very narrow (e 1 « kT) but has a 
finite width, then the Hall "constant" can be written 
in the following form: 

1 { /::,.!\' } 
R = ecN (T) 1 - 1\i (T) · 

Here N( T) is the number of electrons in band c, and 
E 1 

!1N = f~(s0) ~ (s- s0) n (s) dE. 
0 

It is necessary to set special limits to the appli

cability of the formulas obtained here. According to 
Swanson, 2 formula (1) is applicable when H » H 0 , 

where H0 is the magnetic field at which the period 
of revolution of an electron is equal to the relaxa
tion time. However, since the electrons in a nar
row band must have large effective masses, i.e., 
small mobilities (as the width of the band ap

proaches zero, the effective mass becomes in
finite*), it may be concluded that H0 is appreciably 

larger for semiconductors with narrow bands than 
for metals or for semiconductors of other types. 
Furthermore, one must keep in mind that the expres
sion (3) that we have used for a xy is the first term 

of an expansion in powers of 1/H. In the case of 
low temperatures, for an intrinsic semiconductor, 
the coefficient of l/H will be so small [cf. Eq. 
(5)] that the next term of the expansion in powers 
of 1/H will be significant, and the formulas ob
tained here will be invalid. A similar situation al
ways exists (practically at all temperatures) for 
metals with an equal number of electrons and 
"holes" (c{. Ref. 1). 

The authors take this occasion to thank I. M. 

Lifshitz for useful discussions. 

*For example, Sarnoilovich and Klinger 5 showed that 
meff -v l/€ 1 • True, according to an est;mate made in the 
the same work meff "-' mo (mo= mass of a free electron). 
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