
996 AZBEL', GERASIMENKO, AND LIFSHITZ 

1 T. W. Griswold, A. F. Kip and C. Kittel, Phys. Rev. 

88, 951 (1952); G. Feher and A. F. Kip, Phys. Rev. 95, 
1343 (1954); G. Feher and A. F. Kip, Phys. Rev. 98, 337 
( 1955). 

2 A. W. Overhauser, Phys. Rev. 89, 689 (1953); A. W. 
Overhauser; Phys. Rev. 92, 411 (1953). 

3 T. R. Carver and C. P. Slichter, Phys. Rev. 92, 212 
( 1953). 

4 F. J, Dyson, Phys. Rev. 9.8, 349 (1955). 
5V. P. Silin, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 

421 (1956); Soviet Phys. JETP. 3, 305 0956). 
6 K. Fuchs, Proc, Camb. Phil. Soc, 34, 100 ( 1938). 
7 W. E. H. Reuter, and E. H. Sondheimer, Proc. Roy. 

Soc. (London) l95A, 336 ( 1948); M. I. Kaganov and M. Ia. 

Azbel', Dokl. Akad. Nauk SSSR 102, 49 (1955); M. Ia. 
Azbel' and M. I. Kaganov, Dokl. Akad. Nauk SSSR 95, 

43 (1953). 
8 Lifshitz, Azbel' and Kaganov, J, Exptl. Theoret. 

Phys. (U.S.S.R.) 30, 220 0956). Soviet Phys. JETP. 3, 
143 ( 1956). 

9 M. Ia. Azbel' and E. A. Kaner, J, Exptl. Theoret. 

Phys. (U.S.S.R.) 30, 811 (1956); Soviet Phys. JETP. 3, 
772 0956). 

10 Azbel', Gerasimenko and Lifshitz, J, Exptl. Theoret. 

Phys. (U.S.S.R.) 31, 357 (1956); Soviet Phys. JETP 4, 

276 0957). 

Translated by R. T. Beyer 

243 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 5 DECEMBER, 1957 

Polarization Correlation in Nucleon-Nucleon Scattering 

A. G. ZIMIN 

(Submitted to JETP editor December 2, 1955) 

J, Exptl. Theoret, Phys. (U.S.S.R.) 32, 1226-1232 (May, 1957) 

Equations are obtained for the polarization correlation in proton-proton scattering, tak­
ing into account four phases: 1 50 , 3 P 0 , 3 P 1o 3 P 2 and Coulomb interaction. A computation 
using phases for the isotropic states as obtained from scattering data shows that the 
Coulomb interaction plays an essential role for energies of 10-30 Mev, Polarization corre­
lation can thus be used to give a more precise determination of the isotropic phases 
(which do not give rise to polarization), and to estimate other phases in the energy region 
in which they begin to appear, We also consider the scheme of experiments for measuring 
the polarization correlation and obtain the combinations of components of the polarization 
tensor which are measured in the experiments. 

I. INTRODUCTION 

T HE SCATTERING OF PARTICLES with spin is 
described by the average values of spin opera­

tors over the scattered wave. For two particles with 
. ( l) ( 2) 

spms u and u , these operators are: 

( l) 

The corresponding average values are: the scatter­

ing cross section, the polarization of the first ( l) 
and second (2) particle, and the polarization correla­

tion. This last quantity has a tensor character 
(i, k == x, y, z) and may be called the polarization 

tensor. If we represent the asymptotic form of the 
scattered wave as a sum of partial waves (with given 

j, l, s), these average quantities will be expres-

sed in terms of the corresponding phases. The anal­

ysis of scattering of nucleons requires the inclusion 

of phases with l > 0. To determine them unambig­

uously we must measure all the characteristics of 
the scattering which relate the phases (cross sec­

tion, polarization, and polarization correlation). As 
we shall show in detail later, measurement of the 
polarization correlation is especially important for 

determining the phases in the region of isotropic 
scattering of the protons. It is known that the scat­

tering of protons is isotropic over a wide range of 
energy (up to 400-450 Mev), and is therefore des­

cribed by the phases of the isotropic states 1 50 and 
3P0 • To separate them one might measure polariza­

tion in addition to the cross section. However, the 
isotropic phases give no nuclear polarization, while 

its Coulomb part is sizeable only at very small an-
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gles of scattering[~ 5-10° in the center-of-mass 

system (c.m.s.) at medium energies}, and is there­
fore difficult to measure. On the other hand, the 
polarization correlation has a measurable value 
even when only the singlet phase is included. Con­
sequently its measurement (along with the cross 

section) makes it possible to determine these pha­
ses in the high energy region (> 100 Mev), where the 
Coulomb interference term, which enables us to se­
parate these phases at low energies, becomes neg­

ligibly small. 
In the present paper we derive equations for the 

polarization and polarization correlation in terms of 
the scattering phases for orbital angular momenta 
l = 0 and 1 (] = 0, 1, 2), with allowance for the 

Coulomb interaction which plays an important part 
in the scattering of charged particles (protons) for 
energies < 100 \1ev. 

2. DERIVATION OF EQUATIONS 

The polarization correlation in the scattering of 
two p,.articles is defined as the average of the oper­
ator P;k over the scattered wave. It gives the prob­
ability that, after scattering, one of the particles 
(l) is in the spin state a;, while the other is in the 

state ak· 
In order to express Pik in terms of the scattering 

phases by means of the method of phase analysis, 
we consider the asymptotic expression for the wave 
function in the scattering of a plane wave with spin. 
We consider the scattering of initially unpolarized 
particles. In the c.m.s. the system of two particles 
with spins s 1 and s 2 is described by the plane wave 

x:. exp (i k·r), which is the product of the spin wave 

function x::. with total spin s, + s 2 , ••• \s, - s 2 \ and 
projection m on the axis of quantization (taken along 
the direction of relative motion of the particles), and 
the plane wave exp (i k·r) of the relative motion. 

Since the particles are not polarized prior to scatter­
ing, the scattering of waves with given s and m = m5 

proceeds independently, i.e., x::. .... x::.·. where the 
prime denotes quantities after the scattering. The 
asymptotic form of the scattered wave is: 

l 1 1 eikr ~ Sf!1 . S 

'1 sc (s m) = -r- .L.J Ms'm' (0, cp) X.rn· (2) 
sm, 

After the scattering, the original spin s and its 
projection m are in general changed and take on 
some new values s', m'. The quantity which is con­
served is the total angular momentum], which we 
write schematically as a sum J = l + s of the spin 

and the orbital angular momentum of the relative mo­
tion. 

The quantities M!·%·, whose angular dependence 
is given by generalized Legendre polynomials, are 
the amplitudes for transitions between spin states 
(sm)-> (s'm'). There quantities are the generaliza­
tion of the single amplitude which appears in the 
scattering of spinless particles and which is given 
by the Legendre polynomial P 1 (cos e). In the scat­
tering of nucleons (s, = s 2 = Yz) the total spin takes 
on two values: s = 0 (singlet) and s = 1 (triplet), so 
that the scattering matrix M is made up from the 16 
amplitudes M~·%·· It is easy to express all the quan­
tities characterizing the scattering in terms of this 
matrix: 

cross section: cr = Sp (M+M), (3) 

polarization: Pi= Sp (M+criM) / Sp (M+ M) (4) 

polarization correlation: 
+A (1) A (2) + 

P;" = Sp (M cr; cr" M)jSp (M M). (5) 

As usual, Sp denotes the sum of the diagonal matrix 
elements and M+ is the Hermitean conjugate. 

A knowledge of the phases is necessary for a 
complete determination of the scattering matrix. 

We first treat the scattering of two protons 
(n-n scattering is obtainable from the general for­
mulas by setting the charge equal to zero). When 
the Coulomb interaction is included, the scattering 
matrix can be written as a sum of nuclear and 

Coulomb terms. The nuclear part is obtained from 
the asymptotic form of the scattered wave function, 
where the expansion of the plane wave must be car­

ried out using radial Coulomb functions F and G in 
place of the free radial functions Rkl· 

For the case of identical particles, the matrix 

must be symmetrized appropriately: the coordinate 
part must be symmetric for singlet states and anti­
symmetric for triplet states. Taking account of the 
symmetry, the Coulomb part of the matrix can be 

written in the form: 

(6) 

where 

Ks =- 1/ 4 "'1w (s-2ri" + (-)sc-2e-il3) exp (2icr0) 

(7) 

is the Coulomb scattering amplitude. We have intro­
duced the symbols 
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'f) ;= e2 f ftv, c =cos 0 f2, s = sin 0 f2, 
<X='Yjlns2 , ~' 'Yjlnc2 , 

w = y (y + l)/2y 2 ; w is a relativistic correction for 
small angles of scattering. In this part of the ma­
trix, the spin variables appear in delta functions 
since the spin is conserved in a Coulomb field. 

For identical particles there are no transitions 
with change of spin (singlet :;:::: triplet) in the nu­
clear part of the matrix. 

The matrix elements of M are expressed in terms 
of generalized Legendre polynomials and the phase 
matrix 

1 sl .tst 
Ss'l' = exp (2tos'1' ), 

which gives the connection between the incoming 
and outgoing spin amplitudes (sf) -> (s 'l') .1 The 
matrix S is defined for a given J and parity 
P+ = (-)1, P_ =(-)I+ 1. In the case of no spin, 
the S matrix has one element 51 = exp (2 i o1) -for 

each l. We shall calculate only that part of the ma­
trix which is important for practical purposes, i.e., 
the part with orbital angular momentum l = 0 and l. 
Formulae for higher l' s can be gotten without any 
fundamental difficulties (it is sufficient to include 
transitions between states with l > l), but are very 
cumbersome. 

Using the selection rules, we obtain from the 
asymptotic form of the scattered wave the follow.ing 
expressions for the nonzero elements of the scat­
tering matrix (the Coulomb factor exp (2 i o1) is 
omitted): 

10 1 ( 2n ° Jl \ 10 1 i . ( 0n 2n) M10 = 2 cos 0 3-2511 - Sn)• M1_ 1 = - 2 VT e "'sm 0 5 11 -511 , 
(8) 

3 1 2 ,, 1 2 

M 11 =- ---· ei"' sin 0 (1 S 11 - 5 11\ M 1- 1 = _'~ e-i'{! sin 0 (511 - 511) 
10 4 v 2 \ 11 11) ' 10 4 v 2 11 11 ' 

10 - 1 -i'{J . ( 0u ~11 \ Mu --r __ e smO S11 -S 11). 21-'2 . 

The polarization tensor for identical particles is 
obviously symmetric in the particle and coordinate 
indices (since the particles are indistinguishable), 
i.e., it must be written in the form: 

A - 1 A (1) A (2) A (1) A (2) 
Pi/,- -2 -(oi ok + oh oi ). 

The action of the operator Pik on the spin indices 
(s'm') of the matrix M~.~- is completely analogous 
to its action on the spin indices of the wave func­
tions X~·: for example 

etc. 

"' 0 0 "' 1 1 
P xxY.o = - Xo• P xxXo = X.o• 

A 1 i l l) 
P yzX.o =- V2" (X.-1 + X.1 

(9) 

To simplify the writing of the polarization tensor, 
we define the quantity 

on,= Pik Sp (M+M). (10) 

Unlike the normalized Pik. this quantity has the di­
mensions of a differential cross section 

(barns/sterad.). We choose our coordinate system 
as follows (cf. Fig. 1): the z axis is along the di­
rection of the incident flux, the y axis is perpendic­
ular to the plane of scattering. 

Let us consider the scattering the c.m.s. in the 
(xz) plane, which corresponds to azimuthal angle 
cp = 0. From formula (5), by using (6) - (9), we get 
the following expressions for the components uik 

in terms of the four phases: 00 (150), 8~ (3P 0 ), o~ (3PJ, 
o~ (3 P 2), which for simplicity we write in terms of 

elements of the scattering matrix: 

k2 oxx = 4Re [(M~~ + K1) Mi::d + 2 (I Mi~ j2 - I Mi~ j2) + I Mi~ + K1! 2 - I M~g + Ko 12 • 

k2 oxz = 2 V2Re [(Mi~ + K1) M~~* +(Mig+ K1) Mif- Mi:_1Mi~\ 

k2 ozz = 2 (j M~~ + K1/2 + I Mi:_1! 2 + I Mi61 2 - I Mi~ \2)- I Mig+ K1 j2 - I Mgg + Ko 12 ; 
(ll) 

k2 cyy =- 4Re [(M~i + K1) M~f] + 2 ([ Mi~ j2 + I Mi~ j2 ) + I Mi2 + K1!2 - I M~g + Ko 12 • 
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Thus only four components of the tensor are dif­
ferent from zero. 

Similarly we get the expression for the polariza­
tion from formula (4): 

P V2 R . (Mn M1o 0 o y = - 4- e [ t 10 - u) 
(12) 

Only the y-component of the polarization is different 
from zero. The polarization is perpendicular to the 
plane of scattering because the polarization pseu­
dovector is constructed from the two available vec­
tors: k and k' (the wave vectors before and after 
scattering), so that P rv k X k'. 

!/ 

----

FIG. l. Orientation of coordinate axes. 

IVe first consider the formula for the polarization. 
It consists of two terms: a nuclear term and an in­
terference term (proportional to 7J = e2 /1iv). Pure 
Coulomb terms naturally do not occur, since the 
Coulomb field does not change the polarization. In 
the nuclear part only the triplet phases occur, and 
they appear in linear combinations which vanish if 

they are equal or if one of them is equal to zero. It 
is clear that for isotropic phases only the Coulomb 
interference term is left, and this term is important 
only for very small angles of scattering k 5-10° in 
the c,m.s. at medium energies). The measurement 
of polarization at small, scattering angles presents 
well-known difficulties. 

Next we treat the expressions for a;k. They con­
sist of a nuclear, a Coulomb (rv 7]2), and an inter­
ference (rv 7]) part. Unlike the polarization, the cor­
relation contains pure Coulomb terms, so that it 
even occurs in the scattering in a pure Coulomb 
field. It is not hard to see that the Coulomb term is 
itself an interference between Coulomb scattering 
amplitudes and is consequently closely related to 

the identify of the particles. To make this clearer, 

we consider in particular the Coulomb term in the 
expression for P xx. 

The spin state is not changed during scattering 
in a Coulomb field, so that the scattering matrix is 
diagonal. The diagonal terms have the form 
Ks = f(e) + ( -)s f(rr-0) = f+ + (-)s [_, while the 

scattered wave from a given spin state is Ks X;_. 
'"> A (1) A(2) 

We find the average value of P xx =ax ax for 
the individual states, i.e., 

[(K s )+ A(l)A(2) (K s )] K*K ( s+A(l)A(2) s) 
s/.m ' <Jx <Jx s/.m = s s /.m Ox <Jx X.m • 

For the singlet we get - Kt K0 ; for the triplet with 

m = 0, Kt K1 ; while for the triplets with m = ± 1 we 
get zero, Since, for example, (x~ p XX x~) 
= (x~ +x~J = 0. To determine Pxx we need only 
add the results obtained for singlet and triplet 
waves, multiplying them by the statistical weights 

which are equal to ~. since there was no initial 
polarization. We get a~x = KfK1 - KciKo 
=- 2( ft {_ + f +f-* ). In other words, this term 
occurs because singlet and triplet are scattered 

differently. 

3. MEASURABLE CONBINATIONS 
OF CORRELATIONS 

As was shown above, in the plane of scattering 
only four of the tensor components are different 

from zero: P YY' P xx• P xz• P zz• However, in an ex­
periment we can only perform two independent meas­
urements of the correlation: one in which the planes 
of the first and second scatterings are parallel, the 
other in which they are mutually perpendicular 2 

(cf. Fig. 2). By the second scattering we mean 
the scattering by the nuclei. of the analyzers (de-

u 

f+Z 

u 

r 

d 

FIG. 2. Scheme of experiment for measurement of 
polarization correlation. 
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noted by A and B). The following two correlation 
measurements are independent: 

1) By measuring the intensity when both particles 
are scattered upward (! uu), both downward (I dd ), 

one scattered up, the other down (/ ud ), and vice 
versa (I d u), we measure the correlation along the 
y axis: 

(13) 

2) The second measurement is a measurement of 
the intensity when both particles are scattered to 
the left Uu), both scattered to the right Urr), the 
first to the right and the second to the left (/rl) and 

vice versa (llr). By means of a formula analogous to 

( 13) with the substitutions u -> l, d -> r, we determine 
a linear conhination of the remaining components: 
Pxx' Pxz, Pzz· These three components form a 
tensor in the xz plane. We bring it to axes x' z' by 
a rotation through the angle & (& = e/2 is the angle 
of scattering in the laboratory system). In this case 
we obviously are measuring the component of the 

rotated tensor with mixed indices, or more precisely 
the sum~ (P~'z' + P'z'x') (in view of the identity of 
the particles). So the second combination is the 
following: 

(a1 mb/sterad)'l, 

The formulas for PI and P II must he expressed in 
terms of the scattering angle in the lab system. 
Neglecting relativistic effects (for protons of a 
few hundred Mev), we must set () = 2&. The meas­
urable combinations are 

k 2 cr0P1 = k 2 cryy, 

k2croPII = 2si~ e (I Mi~ 12- I M]~ 12). 

4. PHASE ANALYSIS 

Starting from the isotropy of the p-p scattering, 
an attempt was made to describe the scattering in 
terms of the two phases of the isotropic states 

· o0 (150 ) and o1 ( 3P 0 ). 3 Inclusion of the Coulomb in­
teraction makes it possible, by analyzing experimen­
tal data on scattering cross sections, to determine 
magnitudes and signs of these phases in the energy 
region where the interference between C oulomh and 
nuclear scattering is not very small compared to the 
nuclear scattering. Protons with energies of 70-80 
\1ev in the laboratory system belong in this energy 
region. 

3 1/ fj 8 /0 zo 30 50 70 /00 zoo 300 500 

FIG. 3. Energy dependence of the polarization correlation, of measured with scattering 
planes perpendicular. 1. Correlation for () = 20°; 2. Correlation for () = 90°; 3. Nuclear part 
for () = 20°. 

For higher energies the interference term (which 
falls off essentially like E-%) becomes so small 

that separation of the phases which are combined 

in the nuclear scattering cross section 

anuc = f(o 0 , 0 1 ) is no longer possible. By using 
the energy dependence of the cross section, the 
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energy variation of the phases o 0 and o 1 over the 
whole region of isotropy (up to 400-450 Mev) was 
predicted 3 • 

We give a table of the values of the phases which 
we shall use in estimating the correlation: 

E (Mev) 1&, (deg) 1& 1 (deg) II E (Mev) J&, (deg) 1& 1 (deg) 

O.:J 18 ~o 46 32 32 
1 33 ~o 100 10 52 
1.5 42 ,.._.() 150 -7 61 
2 46 ,.._.() 200 -23 70 
10 56 2 300 ~56 84 
18 54 :l 450 -90 90 
30 48 11 

1\tlore accurate values for. the phases can be ob­

tained only from measurement of the polarization cor­
relation (since, as already not~d, measurement of 

the polarization gives nothing). 

0 

- 1 

z 

'/, (au mb/sterad) 3 

l. J if ll 8 10 zo 

In order to estimate the importance of the polar­
ization correlation, we give graphs of the energy 

dependence of aik (for both al and au) for two typi­

cal angles: 0 = 20° (where the Coulomb part is im­
portant), and 0 = 90° (where the Coulomb part is 
neglibly small except at the very lowest energies). 
Figure 3 gives the quantity ab which is measured 
when the planes of scattering are perpendicular, 
while Fig. 4 shows au= aPu while is measured 

;with parallel planes of scattering. In order to make 
the drawings compact the energy is measured on a 

logarithmic scale, while the vertical axis gives the 
cube root of the correlation (in mb/sterad). Such a 

scale enables us to visualize the behavior of the 
curves over the whole energy range. 

From the figures we see that the Coulomb terms 
play an important part not just for intermediate 
energies (cf. a 1), which makes possible a more de­

tailed phase analysis over the region of isotropy 
of the p-p scattering. 

Ep,MeV 

w liO 80 /fl} ZOO li(JO 

FIG. 4. Energy dependence of the polarization correlation, as measured with scattering 
planes parallel. 1. Correlation for 0 = 20°; 2. Total and nuclear correlation for 0 = 90°; 
3. Nuclear part for 0= 20°. 

We get the important result that the Coulomb 
terms cannot be neglected in an analysis which in­
cludes the polarization correlation. Measurement of 

the correlation at intermediate energies (20-100 
Mev) will make it possible to get the isotropic 
phases more accurately and to determine the contri­
bution of the anisotropic phases. 

In conclusion, I express my thanks to Prof. Ia. A. 
Smorodirtskii for suggesting this topic. 
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