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A theory of paramagnetic resonances in metals is constructed, based on the simultaneous 
solution of Maxwell's equations and the kinetic equation for the density operator. There­
sultant nuclear polarization is determined. It is shown that this polarization varies very 
slowly with depth, decreasing exponentially up to depths of 10-3 to I em, which is the mean 
distance traversed by an electron between collisions involving spin reversal. It is found 
that paramagnetic resonance brings about selective transparency of metallic films. 

I. STATEMENT OF THE PROBLEM. 

A COMPLETE SET OF EQUATIONS 

AS IS WELL KNOWN\ paramagnetic resonance of 

of the conduction electrons takes place in me­
tals placed in a constant magnetic field H 0 and a 
variable electromagnetic field of frequency 

cu = U0 = 2p.llof1i (p. is the magnetic moment of the 
electron). 

As Overhauser has shown 2 , this resonance is ac­

companied by polarization of the nuclei of the me­

tal; in this case such polarization takes place as if 

the nuclei possessed an effective magnetic moment 

P.eff• equal to 

(p.0 u true magnetic moment of the nucleus; T ff is the 

time of free flight of the electrons between collisions 
involving spinreversal; a=(4p.2H~/1i2)Tff is the prob­

ability of spin reversal of an electron per unit time 

in a variable magnetic field 2H 1 cos cut). However, 

it is easily seen that Eq. (l) is applicable only for 

very thin metallic samples, the thickness d of which 

is of the same order as, or small in comparison with, 

the thickness of the skin layer: 10-4 to 10- s em. In 

fact, the resonance probability of spin reversal per 
unit time can be introduced only when the electron 
is found in an almost homogenous field for a time 

interval significantly exceeding the period of the 

field. In the case of a large sample (d » 0), this 

condition is satisfied for o/v » 2 rr I cu, which corre­

sponds to the frequencies 

*A preliminary note on this research has already been 
pub! ished 10• 

and in a magnetic field H0 = ncu/2p. » 106 Oe, which 

is practically unobtainable at the present time. 

Therefore, the polarization of nuclei by the 

Overhauser method takes place only in small par­

ticles of micron diameter, in which the electrons 

always-move in a practically homogenous field 3 . 

At the same time, it can be shown that the 
Overhauser method permits polarization of the nu­

clei in layers whose thickness is tens and hundreds 

of times greater than that of the skin layer. In ac­

cord with Ref. 2, the degree of polarization P of the 

nuclei is determined only by the relative depolariza­

tion of the electrons along the direction x of the 

constant magnetic field: 

(la) 
1 1 - .} - ;z coth 2 Wz ; 

where M is the spin magnetic moment of the elec­
trons, I = nuclear spin. Polarization of the electron 

at a given point is determined by all the values of 

the magnetic field H 1 which it experiences along 

the path (up to the given point) from the previous 
collision involving spin reversal. Therefore, the 
magnetic moment at the given point is connected 

with the values of the magnetic field at all points 
within distances of the order of Oeff passed by the 

electron between two successive collisions with 
spin reversal. Since the time T ff between such col, 

lisions is moch greater than the usual times of free 

flight t 0 of the electron, the diffusion length is 

oe££ "' v yt0 T ff/3 ,.._, 10-3 - l em (v =velocity of the 

electron). Consequently, beginning with the low 

frequencies cu ~ c2 /2 rraO~ff, when Oeff > o (for 

986 
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to"" w-n sec and Tffrv 10-6 sec, w3:'l03 sec-1 ), a 

peculiar "anomalous skin effect" for the magnetic 
moment takes place; the coupling between the mag­
netic moment M and the variable magnetic field H1 

is an integral, in which the integration is carried 
out over a region with radius of the order Oeff· This 

leads to a slow change in the magnetic moment with 
depth; the "depth of skin layer" for the magnetic 

moment is equal to Oe££· 

There then follow two important physical conse­
quences: 

l) Polarization of nuclei in the metal can take 

place in layers of thickness of the order oe ££ "' 10-3 

to 1 em. This gives the possibility of obtaining 
rather thick polarized nuclear targets*. 

2) The slow attenuation of the magnetic moment 
leads, in accord with Maxwell's equations, to the 
presence in E and Il1 of small, but slowly vanishing 
parts. In the case of a film of thickness d » 8, just 
this part will determine the transmission coefficient 
for electromagnetic waves through the film in the 
vicinity of resonance. Consequently, for paramag­
netic resonance, not only resonance absorption ap­
pears, but also resonance transmission of the film, 
in which the transmission coefficient can increase 
by many orders of magnitude. Thus, for low tem­
peratures, the transmission coefficient of the wave 
through a film of about 0.1 mm thickness (at reso­
nance) can have the order 10-9 to 10-13 , while away 
from resonance, it has the order of 10-40 to 10-50 , 

(We note that such a phenomenon occurs at all tem­
peratures.) 

The present research was also devoted to the de­

termination of the degree of polarization of nuclei 
in metals and the transmission coefficient of metal­
lic films with account of the spin diffusion t. 

This problem is solved by use of the Maxwell 
equations 

1 aB 
curl E = ---- · 

c at ' 

I H 4" . cur = -c ]; 
(2) 

*As Rozentsveig and Fogel' noted, nuclei of adsorbed 
hydrogen can be polarized in this manner. 

tWe note that determination of the power absorbed in 
paramagnetic resonance in a metal in the case of a con­
stant magnetic field, perpendicular to the surface of the 
metal, and a weak electromagnetic field (when saturation 
of resonance is absent), was carried out by Dyson 4 on the 
basis~ a study of the diffusion of electrons. The polar­
ization of nuclei and selective transparency of a film was 
not considered at all by Dyson. 

and the Boltzmann equation for the density operator 
of the electrons*: 

% + v :: + :: {eE + ~ [vBI} 

i A A (a{) +- [.'lt, fi + -at ·1 °· h co 

(3) 

1c = [L;B; B = 8 0 + B1 (r, t); v = Vps (p). 

Here 8, p and v are the energy, quasi-momentum and 
velocity of the electrons; a is the spin operator: 

the z-axis is chosen along the direction H0 ; 

(aj; at) col is the collision integral for the electrons. 

It remains to write down the boundary condition 
for j. Describing the reflection of the electrons from 
the surface ( = 0 semi-phenomenologically 6 , and 
considering that the electron spin does not change 
in collisions with the surface, we have (for ( = Ot): 

f(vd=(l-q)f+qf(-v;:;), Vt;>O (4) 

(the bar denotes averaging over the momenta). 
Solution of the Boltzmann equation permits us to 

determine the relation between the current density j 
and the direction of the electric field E, and be­
tween the spin magnetic moment M and the direction 
of the variable magnetic field H1 : 

. e \ " 
J = ha .l v Spf d-::"; 

(5) 

M= -/:a ~Sp(~t)d-::P; d-::p=dpxdpydPz· 

Equations (2), (3) and (5) form the complete sys­

tem of equations for the problem under considera­
tion. 

2. REDUCTION OF THE EQUATION TO 

CANONICAL FORM 

We set 

" 

(6) 

where ro is a function which at each given moment 
corresponds to the equilibrium state for E = 0. 

*After completion of this research, a paper appeared5, 

in which the same equation was used. 

tIn Ref. 5, this condition was written for q = I. Evi­

dently, q "'0 almost always. 
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Evidently, in a system of coordinates in which the direction of the magnetic induction Il coincides with 
~ 

the axis ,;, { 0 has the form 

(7) 

For pH« kT, 

Jo = fo (s) J- [LaBf~ (s), fo (x) = {e(x-•,l I kT + 1}-1. (8) 

" Here f 0 is the equilibrium Fermi function, I is a 
unit operator. 

Taking as variables '- the direction of the nor­
mal to the surface of the metal (which does not 
coincide, generally speaking, with the direction z of 

the constant magnetic field), the energy 8, the pro­
jection of the momentum p z, and the dimensionless 
time --c= (Yz77m0)aS-r!as of rotation of the electron 
about the orbit (S-r is the area of the sector in the 

intersection of the plane s(p) = s with the plane 
Pz = const - see Ref. 8), we get for the zeroth ap­
proximation in E, 

(9) 

" 
(Here we have assumed that (a{ 0 /at)col = 0 and that 
!/, J%1 = 0, where :fc is the Hamiltonian operator 

for E = 0). The term (i /h) [[LaB, f'l in this equation 
describes the change in the operator of the electron 
density in the magnetic field, connected with the 

presence of electron spins. This change is brought 
about for two reasons: first, the variable magnetic 
field leads to the equalization of the electron densi­
ties in states with spins oriented parallel and anti­
parallel to the constant magnetic field H0 (see, for 

example, Ref. 2), and second, in an inhomogeneous 
magnetic field, forces act on the spin which are pro­
portional to aH 1/a '·The first reason leads to reso­
nance reversal of spins and it itself determines the 
degree of depolarization of the electrons at reso­
nance. The second reason leads only to "fine 
tuning" of the electrons according to the direction 
of the total magnetic induction B (the latter is ac­
counted for mainly by the form of the operator f0 ). 

It is natural that in the determination of the depolar-

ization of the electrons and the polarization of the 
nuclei, it does not have to be considered. (The 
same is also done in Ref. 10.) In order to demon­
strate this fact, we rrote that 

i J\ A i J\ A A i A 

T [a B,f'] = ~ [a, f'] B +a 1i: [8, f'], 

or, in the quasi-classical approximation, 

The first term on the right leads to spin reversal, 

the second corresponds to the classical force acting 
on the spin. 

We now set 

f' = f~ f + f' ~' fo = n f + f0 a. (ll) 

From (9) and ( 10) we get, taking into account the 
commutation law for a: 

?_f' +at' v- + _1 at' + [f' 01 + (at') 
iJt a~ ' T 0 a-r at col 

a s at; . [a s at'] 
- fL a~- apr,+ lf.L a~ , apr, 

iJtO ato 
-- --- -evE n = 2rJ. Bj'h. - at de ' 

We can show, using direct estimates, that we can 
neglect all terms pertaining to the second compo­
nent in (10). Here the equations take the form 
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The first expression permits us to determine, in ac­
cord with (5), the relation between the current den­
sity j and the intensity of the electric field E: 

This connection was found in Refs. 7 and 9. We are 

(This is clearly valid either for sufficiently low 
temperatures, when t0E >> t{,', and the collisions can 
be regarded as elastic, or in sufficiently weak mag­
netic fields, in which pll0 « kT.) In the general 
case, 

(at) - _1 (f- f) + _1 (f Txolx-o) ; = \ (!) d" at co(- tP t' - • ' • J • P• 
0 0 

Thus the problem reduces to the solution of the 
Maxwell equations (2) with the current density j(E) 
determined in Refs. 7 and 9, and the magnetic mo-

interested only in the function [' which makes pos- ment 
sible the determination of the spin moment M: 

M =X. B + 2[L h-3 f f'd 'tp, 

(13) 

For the solution of Eq. (12) we must write out the 
concrete form of the collision integral. The vector 
{' is changed in collisions both as a consequence of 
the redistribution of electrons in energy and momen­

tum (with relaxation times t 0E and t{,' ), and as a con­
sequence of the redistribution of their spins (with 
relaxation time Tff). In this case, as has already 
been pointed out T ff » t 0 , so that the two types of 
collisions can be considered separately: 

Without taking a specific form for these operators, 
let us write them out as is usually done, with the 
aid of the corresponding relaxation times. It is ob­
vious that in a wholly equilibrium state, {' = 0; 
therefore, 

(of'/ot)rff = f'/Tff. 

Let us determine to what equilibrium value f'eq the 
collisions without spin reversal. Since in such col­
lisions the probability density of finding a given 

projection of the spin, independent of the values of 
the energy and momentum, does not change, 

For simplicity, we shall consider that any change in 
energy in the collisions can be neglected. Then 

rat') f'- f' 
lat t, = -,0-

where r satisfies the equation 

at' at' 1 at' f' 
aT + a~ v~ + To a, + [f'Q] + ~~ 

f' afO _1_ = _!__ + _1_ 
= To- at' t~ 10 Teq 

with boundary conditions 

f' (v~) I ~~o = (l- q) f I ~~o + qf',(-v~ )! ~~o· 

In the case of a half space, evidently 
f' (- v C < 0) = 0 for t;: = oo; the function {' must be 
periodic in 1: with period e = (~ rrmo) as; as. 

For simplicity, we shall consider that 
p.H/kT « 1, so that J£ 0/Jt =- p.{0'(s) JH/Jt. Let 
us set f' = p.{;(s) w '. Then we get 

M=x(B-w'), (14) 

aw' aw' 1 aw' I w' ;;; a B 
at+~ v~ +Ta-r: + [w Q] + -,.=to+ at' 

0 '0 

(15) 

We now introduce the cyclic variables w and Wz: 

iwH0 =w~+iw> w~B0 =Wz, 

B1 = B1x + iBlY• M 1 = MlX + iM1y. 

Then Eqs. (14) and (15) take the form 

(16) 
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, a 1 a 1 
D= -~ v~+- -~-+-.-, 

a~ To i) T t 
0 

r. = 2f1. H 
:.t. h . 

We com~ider only that component Q, which yields a 
resonance, i.e., nl = nl eiwt (we shall denote the 
amplitude by the same letter as the function). Then 
the solution has the form: w = weiwt; Wz does not 
depend on the time. The equations for the determi­
nation of w(() and wz(() close to resonance, at 
(U = no, are written 

{D + i (w- Qo)} W~= wfto + Ql (1 - Wz), 

Dwz=Wz/t0 + Re (Q; w). (J8) 

Thus the problem reduces to the solution of the 
system of Eq. (18) and the Maxwell equations. Evi­
dently the system of these equations is non-linear 
in general, because of the nonlinearity of the cou­
pling of the magnetic moment M with the field 
B1 = 1i 0/2 Jl [this coupling is also determined by the 
equations (18)]. 

Chief interest is presented by the case of suf­
ficiently large fields B1 , in which the electron gas 
close to the metallic surface is almost completely 
depolarized: Wz "" 1, but at suHiciently great depths, 
the depolarization is naturally small: Wz « 1. In 
this case the usual linearization is not possible. 
It would appear that an essential nonlinearity can 
take place only in the region close to resonance. 
Let us investigate this region in somewhat more 

detail. First of all, we note that the solution of the 
first of Eqs. (18): 

ow 1 aw { 1 1 . } w 
ot: V~ + To a, + t--; + T ff + t ( w - Qo) W = to 

(19) 

has a sharply resonant character at cuT££» l, cu t 0 , 

independently of the relation between cu and 1/ t 0 

(in the particular case when cu t 0 << 1). This is con­
nected with the fact that, at cu = 0 0 , 1/T ££ = 0 is an 
eigenvalue of Eq. (19), since in this case, the homo­
geneous equation 

has the nontrivial solution w = w(8), which is inde­
pendent of the coordinates and of 1:. 

In correspondence with this, the solutions of 
Eqs. (18) near resonance (for \cu-00 \ ~ l/Tu«l/t0) 

will, in the first place, have a significantly larger 
nltO [since for (U =no and T ff--> 00' w generally di­
verges as (t 0 /Tf£tYz], meaning that it will differ 
only slightly from w and Wz (since w- w rv nltO); in 
the second place, they are more slowly varying with 

distance than nl (the reason for this is discussed 
in Sec. 1), and in the third place they depend on 
the behavior of nl only at small distances [sine e 
Eq. (19) has a smoothly varying solution even for 
£21 which is a 3-function in the coordinates]. There­
fore, 

Odl-wz(C))=Ol(l-wz(C));:;;.::Odl-wz(O));, 

n~w (C) = n;-w (C) = n~:W (O). 

At large distances, £21 changes as slowly as wand 
wz; however, as was pointed out, the value of the 
right side at such distances has no effect on the 
form of wand Wz. Of course, all these assertions 

can be verified. 
Thus, Eq. (18) near resonance can be written in 

the form 

(21) 

We set 

W=[l-Wz(O)]u, Wz=Re[w(O)uz]. (22) 

Then Eqs. (20) take the form 

{D + i (w- non u = u/to + nl, 
(23) 

u {O,vd =,1- q) u (0) +qu (0,- vd, v, > 0, 
(24) 

where 

Re (~ (0) uz \()] . 
Wz (C) = ~--c:._-c----c.- '; 

1 + Re [u (0) uz (OJ] 
(25) 

u (~) w (~) = 
1 + Re [u (O)H~ (0)] 

The magnetization M z and M and the polarization of 
the nuclei P are determined by Eqs. (17) and (1a), 
as before. 
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3, SOLUTION OF TilE EQUATIONS FOR 

THE BULK METAL 

a) Special case 
Let us consider the simplest case (in mathema­

tical behavior) of a quadratic dispersion ~:: = p2 /2m* 
(m* =effective mass), a field H0 perpendicular to 

the surface of the metal (here the z and ' axes 
coincide) and specular reflection of the electrons 
from the surface, i.e., q = l. (We note that the 
quantity q does not depend on the qualitative re­
sults.) Then Eq. (23) takes the form (u independent 

of 1:): 

1 '1 '1 
- = --+ -+ i (w- i20). 
t t0 TH 

(26) 

The boundary conditions are 

u(O,vz)=u(O,-vz), u(oo,-vz)=O, Vz>O. 

Finding the solution of Eq. (26), and averaging it 
over the Fermi surface, we get an integral equation 
for it: 

0) 

u (z) = ~ R (I z- C !) { /o u (:) + t nl (C)} d C, 
-00 

[We note that for 0 1 = 0 and t/t 0 = l, IT= const is a 

solution of Eq. (27)]. From (27) we find 
0) 

- _ _ i_ \ Rkt0 Q1k cos kzdk 
.u (z) - 1t ~ toft- Rk ' (28) 

0 
0) 

Rh = tan-1 kljkl, il1k = 2~ i21 (z) coskzdz. 
0 

by making use of a Fourier transformation. \Ve note 
that close to resonance (jw - 0 0 jrv l/T ff) the only 
essential k are those for which kl~ (tofTff)Y.. For 
such kl, Rk "' l- k2 l 2 /3 and 

The Maxwell equations (2) for 

H1 = HlX + iH1y = H1ei"'1; 

are written in the form 

dEjdz =- w Bifc; dHifdz =- 4o. ijjc. 

Therefore, 

00 

(\ \ 4(-L c 
~~1o = 2) i21 (z) dz = 1i w E (0), 

0 

where E (0) is the field at the surface of the metal. 

Thus, close to resonance, 

- 3c£ (0) 8 ££ 
( ) _ _ e -zt8 ff • u z - zB l e e , 

0 

(29) 
~ v toT££ 
0 eff• = V . 

3 (1+i (to-!10) T ffl 

It is seen from this equation that the width of the 
resonance line is determined only by the quantity 

Tff: \w- no I"-' l/Tu which was first shown by 
Oyson 4 . . 

For the magnetization, substituting the value of 
u (z) in Eq. (17), we get, at resonance, 

Mz =X B0 { 1 - 1 ~~~~al 2 e-z/8 e££}, 

M - M + .M - . B a -z's 
- X l y - - l X 0 '1 + I a 12 e ' e££ ' 

where 

We note that for sufficiently weak field B 1 , when 
saturation is absent, i.e., \a\ « l, the equations for 
Mx and My undergo (with accuracy up to an exponen­
tial factor) a transition to the Dyson formula 4 , 

where we must set v = w. 
Thus, we have shown that u(z) actually vanishes 

at the depth Oeff » o. Moreover, u and u» 01t0, but 
u- u "-' 01t0, i.e., u- u.« ii. Thus the assumptions 
of the preceding section are valid. 

We note that H1(z) can be represented qualitatively 
in the form of two parts: a large, rapidly attenuating 
part, and a small, slowly attenuating part: 
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b) General case. 

Let us find the quantities of interest to use for 
arbitrary assumptions on the dispersion law 8 (p) 
and for arbitrary magnitude and direction of the con­
stant field H0 • For simplicity, we consider only the 
case of resonance .. The reflection of the electrons 
from the surface we shall consider diffuse (q = 0) 
which is practically always the case. 

As was shown, the problem reduced to finding a 
solution of the equation 

and go over to the Fourier transforms 
00 co 

C? (k) = ~ f (~) eikf, d~. 0 1 (k) = ~ 0 1 (~) eikf, d~, 
-co -co 

(obviously, cp (k) = ii (k)): 

(L2 + k2) 9 (k) = 1 ~ (k) l.;v~- 2f' (0). (35) 

au 1 au u u 
Vv - + -- - -- + -- = - + Ql " a~ To a-r t* t 0 

0 

(30) For determination of{' (0), we note that, from Eqs. 
(32) and (33), 

which is periodic in 'T with the boundary conditions: 

u ( 0, vn) = u ( 0); u ( oo, - vn) = 0, vn > 0. 

(31) 

We introduce 

V0 = characteristic velocity on the Fermi surface. 
Then Eq. (30) is written 

, 1 (a ) L=v~ a-r+r*. (32) 

For solution of this equation, we apply the method 
developed in Ref. 9. We replace p in Eq. (32) by 
-p; then we obtain for the function u ( -v) the 
equation 

au ( -v)/iH- Lu (- v) =- r.Jl/V ~· (33) 

Here use is made of the fact that 
8 (-p) = c; (p), v(-p) =- v(p), 

tal [a] 1al To a-r p := v ap_ = To- a-r -p. 

Acting on Eq. (32) with the operator a; a~- i, and 
on (33) with the operator a; a~ + L, and reducing 
them, we obtain an equation for the function 
f = Y:i [u(v) + u (-v)]: 

(a2;a~2 _ iz)f = -~~L!V ~· (34) 

where it is taken into account that {CO= u (0. 
In this equation, we continue the functions f ( ~) 

and nl ( ~) as even functions into the region ~ < 0: 

f' (0) =- 1/ 2I {u (v)- u (- v)}. 

We now make use of the boundary condition (31). 
Since, for V \: > 0 on the surface of the metal, inde-· 
pendently of the other projections of the velocity 
u = ii = J: then, as is easy to see, 

u (v) -- u (- v) =sign V~ · (f(O)- f (0)), 

f' (O) =- L sign v~ . ({(O)- t (0)). 

Consequently, Eq. (35) takes the form 

(L2 + k2) cp (k) 

= (2L/V d P/z1~ (k) + v~ ItT (O) -1 (0)]}, 

9 (k) ={(L +ikt1 + (f.- ikP} 

xP/z1~ (k) +IV d rf (O)- f (O)]} 1/V ~- g'~- + g_. 

Computation of the right side of this expression re­
duces to finding the periodic solution of the linear 
equation 

(CJjCJ't + 1* + ikV ~)g ± 

= 1/zr~ (k) +I v~ I (f (O) -f (O)J. 

This solution has the form 

T+B ~ 

X ~ exp {1* ('t' -'t) + ik ~ V ~ d 't"}{ 1 /2r~ (k) 
T T 

+ I v ~ I (f (O) - f (O)} d't'; 
B 

V~:=~V~d't. 
0 

Therefore, remembering that tjJ(k) = u(k} + t0 0 1 (k), 
we get 
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't+6 

9 (k, "') = R (k, "') u (k) + R (k, "') t0 DI(k) + ~ N (k, "'· "'') [T(O)- f (0)] d"', (36) 

where 

T+6 't 1 

R (k, -=) = Re-r [exp (r*fJ + ikvd- 1P ~ exp {r* ('t'-") + ik ~ V~d't"} d"', 
.,. .,. 

N (k, -:, -:') = 2Re [V~ I [exp (T*O + ikvd- 1p exp {r*("'- "') + ik ~ V~d""} . 
.,. 

(We note that although T = f « J, T- f 'V to nl. Therefore we cannot neglect this difference.) 

For convenience, we introduce 

~(k, 't) = ~(k, 't) -cp(k, 't), ~ (k, 't) = 0, 
00 00 

S (")=f(O,")-f(O,'t)=lim ~ \ ~ (k, "') · cos~ k · dk = \ _!_ ~ (k,'t) dk,S = 0. 
!;+ 0 7t J j 7t 

0 0 

Then Eq. (36) can be written in the form 

.,.+e 
~ (k, 't) = [1- R (k, 't)] u (k)- R (k, 't) t0 0 1 (k)- ~ N (k, 't, 't') S ('t') d't'. 

Averaging this equation over the Fermi surface, we find the function Ti(k): 

For the determination of S(1:), we substitute u(k) in 
Eq. (37) and integrate the latter over k from 0 to oo. 

We then obtain the integral equation 

en 

s ('t) = _!_ \ ~- R (k, -r) t n (k) dk 
7t .) 1 - R (k, T) 0 1 

~ 

= .,.+e 
- ~ ~dk ~ N (k, "• -:') S (-:') d't' 

0 .,. 

= 't+6 

+ _!_\ 1 -R (k, -r) dk \ N (k, "• "') S ('t') d't', 
1t .) 1 - R (k, -r) .) 

0 't 

N(k, 't, 't')S('t')d"'· 

where 

't"+-r' 

- 2 ~ V,d't"eY* 6 (ey•e- I) l\ 
't'+-r' 

+ ( ~ V~d"" y (eY''e _ 1)2. 
.,. 

It is easy to see that in weak fields, 

(37) 

(38) 

wherein we must set y* = y. In a fashion similar to 
that of Hef. 9, we can solve the resultant equation 
by the method of successive approximations, and 
sh.ow that S ( 1:) "' t0 D1 (k) and that it has no singu­
larities for any values of 1:. 

li0 (y » l) l"' 1/y. For strong fields H0 (y « l) two 
cases are possible: 

Heturning to Eq. (38), we note that for suffi­
ciently small k (such that kl « l) 

R (k, 't) = t~jt0 -l2k2 , 

l. If the field H0 forms an angle with the surface 
cp ~ y (in this case V1; is not small), then 

-2 
cp(1:, 1:') "'2Vs and, as before, l"' l/y. 

2. If the field H0 forms and angle with the surface 
cp ~ y (in this case V1; "'0), then l "' l. 

As in case (a), we have 
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-r+O 

u (0 = ~ {t00 1 (0) + ~ N (0, "•"=') S ("=') d1:'} 
, 

It follows from the Maxwell equations that 111 (0) = (411 c/1iw)E (0,). 
Taking it into account that S ('C) rv t0 il1 (0), we get 

u(q =ActoE(O)l(Tu~e-~111 eff, oeu =lr0 VTff,jl0 , A~l, E(O)=(cZj47e)HI(O), (39) 
Borol V to 

Z is the surface impedance which was found in Ref. 7. 
The exact value of l depends on the dispersion 

law and the direction of the field H0 • Thus, for 
quadratic dispersion and a constant field perpendi­
cular to the surface of the metal, l = 1/yv'3, and we 
again obtain Eq. (29). 

Making use of Eqs. {25) and (1a), we obtain the 
polarization of the nuclei in the bulk metal at reso­
nance: 

Thus, in the bulk metal, a substantial polarization 
of the nuclei takes place to a depth of 
Oeff rv V 0 T0 (Tff/t0 )'1. in the case of a strong field H0 

parallel to the surface, and to a depth 
y, 

Oeff rv V 0 t 0 (Tff/t0) 2 for all other cases. 

4. SELECTIVE TRANSPARENCY OF A FILM 

In order to find the transmission coefficient of an 
electromagnetic wave through a film of thickness d, 
it is necessary to solve Eq. (23) with the two bound­
ary conditions (24). 

For simplicity we consider the case of a square 
law of dispersion 8 = p2 /2m*, a field H0 perpendi­
cular to the surface, and mirror reflection of elec­
trons from the surface: q = 1 (inasmuch as the char­
acter of the dispersion law and the boundary condi­
tions affect the results only quantitatively, as we 
have already seen). 

In this case, Eq. (23) takes the form (since u 
obviously does not depend on 'C) 

viJujoz+uft~=ujt0 +01 • (40) 

The boundary conditions are written 

U (0, Vz) = U (0, - Vz), U (d, - Vz) 

= U (d, Vz), Vz > 0. 

Finding u (z) and averaging it over the Fermi surface, 
we obtain the integral equation for u(z): 

k 

u (z) = -21 I R (It-~ i) [u (~) + tof!l (C)J dC, 
Vo ) 

-k (41) 

d 
k= --.' 

v0 t0 

. "" 
R (t) = ~ \ cosh_(k- t) x dx . 

to J smhkx x 
1 

The function R (t) is even and periodic in the inter­
val (- 2 k, 2 k) with period 2 k. Thanks to this, we 
can solve Eq. (41) by the expansion of all functions 
in Fourier series (cosines) with period TT/k. The so­
lution has the form 

- u ~- rrnz 
u (z) = -{- + LJ Un COS k, 

n~1 

"" . 
\ -;r;nt d to tan-1 (rrn/k) 

Rn = ~ R (t)cosT t = rr nn; k 
• ~ 0 (42) 

In resonance, the chief contributions in (42) are 
clearly made by the 'Un with small n (so that 
TTn/k << 1). In this case, 

I [ t 0 1 ( rrn '21 
Un = foQin Tfi + 3- k-) .. 

But in 111 (z) the essential z f.. o/v0 t0 , where 

TTnz/k ~ o/Oe££ « 1; therefore, 

k k 
2\ rrnz 2\n n 

D.1n = T j 0 1 (z) cos k dz = k j ~~ 1 (z) dz = ~~1o· 
0 0 

Thus, 
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From Maxwell's equations we get 

0 10 = (4tJ.C I hcu) [£ (0)- E (d)] I d. 

(We note that for d-> oo Eq. (43) goes over into 
Eq. (29). 

Of fundamental interest (see below) is the con­
sideration of selective transparency of films for 

which o « d << Oeff· Here (at resonance), 

u (z) ~ cTu E (0) I H 0d. 

Hence 

M =- ixB u eiwt == M eiwt. 
o 1 +I u 12 o 

From Maxwell's equations, 

since H1 = 8 1 - 477M, then 

E' =- cuB1 I c, B~ =- 4"'ij I c, 

i.e., B 1 in this approximation does not depend on the 
magnetization and falls off rapidly (at depths of 
order o). 

Consequently, at a depth Oeff » z, d - z-» o, we 
have a homogeneous magnetic field -477 M0 eiwt 

(obviously, this field always has circular polariza­
tion). Hence, taking into account the boundary con­
ditions on the surface of the film, we easily obtain 
the transmission coefficiP-nt for electromagnetic 
waves through the film: 

I 
H ltrans 12 I xTff c3 Z2 12 

K= Hline ~ 2rtd{1+Jc2ZTffHline/2rtdHoJ 2 } ' 

where Z is the surface impedance without account of 

spin polarization. 
The unusual form of the equation for K is con­

nected with the specific change of the field in the 
film as a result of the diffusion of the spin [see 
Eq. (29a)]. 

The power of the previous wave rrtrans will be 
maximum in that case in which 

(43) 

Here 

ll!max _ -~- (x1Lc2 I Z I ) . 
trans - 16 [LA ' 

Hmax _ 1tx'lic2 I Z I 
trans - 2[LA ' 

i.e., both these quantities are independebt of the 
thickness of the film (but H.opt rv d). me 

In the general case, 

lFtrans 

- 4Wm"x{H. IHopt }2 /{I+ (H I Hopt)o}" - lme line 1 line; line - --; 

max H I Hopt I I I I J-./ / Hopt '''] = 2Htr,;.s I line line [ + line line i- · 

5. POLARIZATION OF NUCLEI IN FILMS 

We write out the formula for the polarization of 
nuclei in films* (at resonance): 

P = + {(/ + 112)coth(/ + 112) A _lhcoth1 !z A}; 

A _ ~~ [LHn cosh[(d- z) /8 eff] 

-1+1ai2 kT cosh(df8eff~) ' 

where 
cT££ [E (0)- E (d)] d 

IX= coth~-
Ho8 eff 8 eff 

for arbitrary d. In the case d < o, 

a = 4 f1 T ££ H Jli, 

i.e., we get the Overhauser formula. In the case 

0 « d « Oef£: 

Finally, for d » oeff, we get the formula for the 
bulk metal: 

a= cTffE(O)/H0 oeff = c2 Tf£Zlline/277dH0 • 

*This formula is correct for d - z << 0 since at such a 
distance from the second surface the polarization is sig­
nificantly less, 
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Equations are obtained for the polarization correlation in proton-proton scattering, tak­
ing into account four phases: 1 50 , 3 P 0 , 3 P 1o 3 P 2 and Coulomb interaction. A computation 
using phases for the isotropic states as obtained from scattering data shows that the 
Coulomb interaction plays an essential role for energies of 10-30 Mev, Polarization corre­
lation can thus be used to give a more precise determination of the isotropic phases 
(which do not give rise to polarization), and to estimate other phases in the energy region 
in which they begin to appear, We also consider the scheme of experiments for measuring 
the polarization correlation and obtain the combinations of components of the polarization 
tensor which are measured in the experiments. 

I. INTRODUCTION 

T HE SCATTERING OF PARTICLES with spin is 
described by the average values of spin opera­

tors over the scattered wave. For two particles with 
. ( l) ( 2) 

spms u and u , these operators are: 

( l) 

The corresponding average values are: the scatter­

ing cross section, the polarization of the first ( l) 
and second (2) particle, and the polarization correla­

tion. This last quantity has a tensor character 
(i, k == x, y, z) and may be called the polarization 

tensor. If we represent the asymptotic form of the 
scattered wave as a sum of partial waves (with given 

j, l, s), these average quantities will be expres-

sed in terms of the corresponding phases. The anal­

ysis of scattering of nucleons requires the inclusion 

of phases with l > 0. To determine them unambig­

uously we must measure all the characteristics of 
the scattering which relate the phases (cross sec­

tion, polarization, and polarization correlation). As 
we shall show in detail later, measurement of the 
polarization correlation is especially important for 

determining the phases in the region of isotropic 
scattering of the protons. It is known that the scat­

tering of protons is isotropic over a wide range of 
energy (up to 400-450 Mev), and is therefore des­

cribed by the phases of the isotropic states 1 50 and 
3P0 • To separate them one might measure polariza­

tion in addition to the cross section. However, the 
isotropic phases give no nuclear polarization, while 

its Coulomb part is sizeable only at very small an-


