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Here V(t;'6 ) = V1(t;'0)- V2(t;'0 ); V1 (t;"0 ). is the volume 

in momentum space occupied by the electrons; 
V2 (t;'0 ) is the VOlume "occupied,. by the "holes,,. 

As is seen, llxx and /lyy depend in this case on 
the angles between the field and the crystallo

graphic axes and are determined exclusively by the 
energy spectrum. If the open surfaces are substan

tial2, then llxx and /lyy are functions of the angles. 

f.lik is as follows: the llaf3 increase linearly with the 
magnetic field (a, '3 = x, y), and the f.liz approach 

saturation. Hence, a study of the asymptotic form 

of the Thomson coefficient tensor in a strong mag

netic field affords an additional possibility of in

vestigating the topology of the equal-energy sur

faces of the conduction electrons. 

If n1 ;= n2 [hence' V(t;'0) = V1((0 ) - ~(t;'0) = 0 and 
V'(t;'0 ) f: 0]*, then the asymptotic form of the tensor 1 A. H. Wilson, The Theory of Metals, Cambridge, 1954. 

2 Lifshitz, Azbel', and Kaganov, J, Exptl. Theoret. 

* There is no foundation for the assumption 
V'(1;, 0 ) = 0. For example, in the case of a quadratic iso
tropic dependence: 

m1(m2) is the effective mass of the electrons ("holes"). 

Phys. (U.S.S.R.) 30, 220 (1956), 31, 63 (1956); Soviet 

Ph;s. JETP 3, 143 (1956), 4, 41 (1957). 

M. Kohler, Ann. Phys. 6, 18 (1949). 
4 L. Landau and E. Lifshitz, Statistical Physics, 

Moscow-Leningrad, Gostekhizdat, 1951. 
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The ground-state energy is calculated by a variational method for the system defined by 
Hamiltonian (1). The trial wave-function is given by Eq. (3). The results are applied to 
the special cases ofF and F'-centers. In the limits of weak and strong coupling, the cal
culated energy agrees with the exact results of second-order perturbation theory and of the 
adiabatic treatment respectively. The calculation can be regarded as an interpolation 
through the intermediate coupling region. It is valid when the effective size of the local
ized electron state is large, and when the conditions of the continuum model of F and F 1 

centers are fulfilled. 

W E CONSIDER systems described by a Hamilton
ian of the form 

branch number t of the energy-surface, qx.t is the 

normal coordinate of the same vibration, e~t is 

the coupling-constant between this vibration and 
the ith particle, V(r1 , ••• , rN) is the potential of 

the interaction of the particles with each other and 

with external fields, and 
+ ~C~tq·xt'X_x (ri)+V (r1 , ... , rN)· 

(l) 

xit 

Here ri is the radius-vector of the ith particle, mt 

is its mass, cu>Gt is the vibration frequency of the 

continuum corresponding to a wave-vector "and to 

X:+,(ri)=( ~ sin(xri+ ~) 
2rc · 1 2 3 

Xj = L 'lj; 1 = ' ' ; (2) 

''i=0±1,±2, ... V=V 
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Thus the X are a complete system of functions 
normalized t: a volume V, comprising a cube of 
side L. In Eq. (1), the first term is the kinetic en
ergy of the particles, the second is the energy of 
free vibration of the continuum, and the third is the 
interaction between particles and continuum. Such 
Hamiltonians occur in many physical situations. 
For example, the conduction electrons in a crystal 
have an interaction with the lattice vibrations which 
reduces to the form of Eq. (l) after the effective
mass approximation is made. The same is true of 
electrons localized around an impurity center, 
whose effect is included in the term V(rw .. , rN ). 

The same type of Hamiltonian describes an exciton 
of large radius, in which the electron and hole move 
as two interacting quasi-particles. A similar Ham
iltonian arises in the problem of a particle interact-

ing with a quantized field. . 
The particular forms of Wx.t, c~ t and V(r1 , ••• , r N) 

will be chosen later when particular applications 
are considered. Initially we develop a general ap
proximation method which applies to all values of 
these quantities. The energy levels will be calcu
lated by a direct variational method which is valid 
for any strength of coupling. The results obtained 
go over, in the limits of weak and strong coupling, 
into the well-known results of perturbation theory 
and of strong-coupling theory. In this paper we con
sider the case of particles localized in a potential 
well produced by an external field. There is no 
translational symmetry. A following paper will deal 
with the case of translational symmetry. 

I. CHOICE OF APPROXIMATE WAVE-FUNCTION 
AND DETERMINATION OF ITS 

VIBRATIONAL PART 

One of the authors 1• 2 showed earlier that the 
strong-coupling limit represents the particle as fol
lowing adiabatically the comparatively slow oscil
lations of the continuum. The adiabatic approxima
tion 3 consists in assuming for the system a wave
function of the form 

'Y = 'f (r;, q,_t) <P (qxt), 

with tjJ varying much slower than <I> as a function of 

qx.t' We showed further 1• 2 that in t/J(ri, qx.t) one may 

replace the coordinates qx.t by a se If-consistent set 
of mean values, with an error which becomes smaller 
as the coupling becomes stronger. Consequently, as 
the coupling strength tends to infinity, the multipli
cative approximation 

'F=<j;(rl, ... , rN) <P ( ... q,_t ... ) 

becomes exact. This is explained by observing that 
the particle moves so fast in its potential well that 
the slowly moving continuum feels only the average 
field of the tjf-cloud of the particle. Thus the con· 
tinuum moves as if it were subjected to a given ex
ternal force. The field of the t/J-cloud produces a 
displacement in the equilibrium positions of the con
tinuum coordinates qx.t• The equilibrium values of 
these coordinates are functionals of t/J. If the cou
pling is weakened, the particle motion becomes 
slower and the continuum begins to feel the instan· 
taneous field of the particle. Then the equilibrium 
positions q~t of the coordinates become functions 

of the particle positions ri, q~t = q~t (rl · · · rN)· 
We thus approximate the wave-function of the sys
tem by the expression 

where r denotes the totality of particle coordinates 
ri. We number the normal vibrations by a single in
dex x. instead of the pair of indices x.1 t. The dou
ble indices can be reintroduced in the final results. 
The approximation (3) is a generalization of the mul
tiplicative approximation mentioned earlier. We min
imize the functional 

H = ~ grif'Ydrdq, dq = f1 dqx. 
Y. 

with the supplementary condition that 'I' be normal
ized. To do this we transform from the variables 
ri ... qx. to the variables ri ... q~. The Jacobian of 

the transformation is unity. The energy-operator in 
terms of the new variables is 

(4) 
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Without loss of generality we may suppose that each of the functions t/1, <l>x, is normalized. We also sup

pose these functions to be real. Then, using the identity 

\ acv 
J<Dx?dq~ = 0 

qx 

and writing 'f = ~ cp (r) ''{! (r) i2 dr, we find 

(5) 

oc = 1 + ~ ~ (V.qo)2 B, x = qox + _!_ '\.l cix-(r) 
X ..:::..J m .(0 t X ' 7iW ..:::..J X '-X i • 

. t X X . 
t t 

We minimize this functional with respect to <l>x, for fixed t/1, and obtain the Euler equation 

- oc (o2<D 1 oq'2) + q'2cD + 2q' ~ <D = (21. 1 t(i) ) <D . 
Y. X X X X X• X X X X. X 

Here Ax. is a Lagrange multiplier introduced by the minimization. The Euler equation has the solution 

where Hn is a Chebyshev-Hermite polynomial and nx, = 0, l, 2, .... Substitution of this result into Eq. 
}(, 

(5) gives 

jj2 

2m; (v .qo)~ (n + 11.) 
I X X /2 

+ ~ If.,/i(i) (qn~ ·- -q.o2) + )1, ci [q"x~(r.) .- q<J x (r.)] L 1 ..... x z z - x x· ~z 1 x --Y- t ' 

(6) 

(7) 

(8) 

In deriving Eq. (7) we suppose that q~ (r) "' V -~ and 
pass to the limit V-+ ""· In this case we can write 

The functional (8) differs only in notation from the 
functional J[tjl] appearing in the earlier papers, 
where the multiplicative approximation was used. 
See Eq. (29) of Ref. 2, or for F and F 1 centers 
Eqs. (23.11) and (26.10) of Ref. l. 

We shall next minimize the functional Q, varying 
q~ (r) for fixed t/J(r). The resulting Euler equation 
looks complicated and has not been solved in the 
general case. We solved it in the limits of weak and 
strong coupling and found that in both cases the 
solution can be written in the form 

(9) 

with a suitable choice of the coefficients a~. We 
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therefore use the approximation (9) for q~(r) in the 
general case, and use the variational method to de
termine the a~. Substituting Eq. (9) into (7), we ob
tain 

X 

+ ~ [Ji~ wx i i, + i i,] 
-- GxGx CxGx 

2 

(10) 

x[ X:-x (r,) X_x (ri,) ~ X-x (r;) X_x (r;J J. 

2. THE GROUND STATE 

We obtain the energy of the ground state as the 
absolute minimum of the functional (10), in which 
we should set all nx, = 0 since this removes positive 
terms from the functional. The minimum is then 
found by a direct variational method. 

If we take t/J = const = v·v, which corresponds 
to the case V(r) = 0 in the limit of weak coupling 
(c~-> 0), then 

x._x (r;)=O; 
(') ~ ~ 

X_x (r;) X-x (r ;,) = -~'' ' 

fective mass of a conduction electron in the crystal, 
assuming the ions to be fixed and motionless. Eq. 
(14) was obtained earlier by Frohlich 4 using per
turbation theory, and by Gurari 5 and Lee, Low and 
Pines 6 using variational methods. 

From the other side, the approximation (3) also 
gives the correct ground-state energy in the strong
coupling limit, since even the less general multi
plicative approximation, as we mentioned earlier, 
gives the right result in that limit. Knowing that· 
the approximation (3) gives accurate results in both 
weak and strong coupling limits, we may hope that 
it also allows us to make a reasonable calculation 
in the intermediate coupling range. 

In problems where t/J(r) is symmetric in the parti
cle coordinates, for example for the ground-state of 
an F '-center, and in various other cases, we may 

use for t/J(r) the approximation 

N 

·;; (r) =IT •{; (r;) (15) 
i=L 

If we also assume vr, (fi) = t/1: (-r .), we find 
' ' t 

(16) 

= ljV, x._" (r;) = v-'!, cos xr;. 

(11) When these values are substituted into Eq. (10) and 

the result is minimized with respect to the a~, we 
obtain 

When Eq. (11) is substituted into (10) and the result 

is minimized with respect to the a~, the ground

state energy becomes 

1 N 

Eo=~ 2V ~ (12) 
x. i=l 

This coincides with the energy calculated by 
second-order perturbation theory. The last term in 
Eq. (l) is treated as the perturbation. In particular, 

i --2 
Cx (1- cos xr;) 

ai = - ~----'-----===-=-
x (Jt2x2(2m;) +'/twx (1 -cos xr;J ' (17) 

Q , 1 "i;.l c~' (l- cos xr~) 2 
= J [u] ~' -~ - , . 

' 2V xi ('lt2x2(2m;) -i- Jiwx (1- cos xr7J 

(18) 

In the subsequent calculations we must specify 

the form of the functions t/J.(r .). For many applica-
' ' tions the following choice gives a good approxima-

in the polaron problem which has N = 1, Wx, = w in- tion: 
dependent of x,, and 

(19) 

c~ =- e V 4IThwc;[ x [, c = ljrz 2 ~ ljs, (13) 

the energy is given by 

(14) 

Here 8 is the static dielectric constant of an ionic 
crystal, n is the refractive index, and m is the ef-

In this case 

and Eq. (18) gives (20) 

1 ~ c~' (1- exp (-x2j4~;)l' 
Q = j [·~]- .211· ~ (1i 2x2;2m) + 1iw (1-exp(--x"/4~ -)) · 

X,L l X l 
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In the F-center problem there is only one electron 
(N = 1), V = -ze2/ e;r, ex, is given by Eq. (13), and 

one may neglect the dispersion of longitudinal opti
cal vibrations of the ions by setting UJx, = UJ. Then, 
replacing sums by integrals according to the rule 

~ f (x) = (2.-:t3V ~ f (-x.)dx1dx2dx3, 
X 

we obtain 

X 
X=--

2Yif' 
b = 2~ti 

mw' 

3Ji23 e2 v-J ([3) = ' 2171:_- y; [3 (c + z2'/, / z). 

(21) 

(22) 

The ground-state energy of the F-center is the mini
mum of Eq. (21) with respect to (3. 

In the strong-coupling limit we shall see that (3 
is large. Thus 1((3), which contains terms of order 
(3 and (3~, is considerably larger than the second 
term in Eq. (21) which is of order (T'i:t. Hence the 

extremum of QF can be found approximately by mini
mizing the term 1((3) alone. This minimization was 
carried out in our earlier paper 7 , with the result 

This value of ,8 gives 

~ me4 ( 2' 'z 2 

Et = - lhrti2 C +----e) 
,, 00 

2e4mc (c + 2 '2Z"E) _ \ (1- e-x')2dx 

:11ihr' 12 .) b Fx2 + 1 -- e-x• ' (24) 
0 

bF = (2me4;9o.h3(J)) (c + 2'1'z/s)2. 

In the denominator of the integrand in Eq. (24) we 
neglect (1 - e-"2

) in comparison with the large term 

b FX2 • The final result is then 

2'•''z) +-· EC 

(25) 

We can go from the F-center to the polaron prob
lem by setting z = 0. Eq. (24) then gives for the 
ground-state energy of the polaron 

(26) 

2 
If here we neglect (1 -e-x ) compared with bpx2 in 
the denominator of the integrand, we obtain 

E0p = - (0.1 06oc2 + I. 76) t~(J). 

This is the polaron ground-state energy in the 
strong-coupling limit. 

(27) 

It is interesting to see that Eq. (26) also gives 
the correct result (14) for the energy in the weak
coupling limit when (3 is small. The reason for this 
is that as c -> 0, (3 -> 0 too and hence t/1-> const. A 
constant t/J, as we saw earlier, gives the perturba
tion-theory result. Hence Eq. (26) gives a single 
analytic expression for the polaron ground-state en
ergy which is correct in both weak and strong cou
pling limits. It is reasonable to use it as an inter
polation formula for the energy in the intermediate 
coupling region. But Eq. (26) was obtained from 
Eq. (21) by substituting the value of (3 from Eq. 
(23). This value of (3 was found by minimizing Eq. 
(21) in the strong-coupling limit. If we minimize 
Eq. (21) in the intermediate coupling range, we 
shall find a value of (3 differing from Eq. (23), and 
this will give a more accurate result (a lower value 
for E 0 P) than Eq. (26). 

A shortcoming of the approximations (3) and (19) 
as applied to the polaron problem is their lack of 
translational invariance. Only in the case of weak 
coupling, when t/1 = const, is the correct transla
tional symmetry preserved by the approximation-s. 
This shortcoming will he removed in a following paper, 
in which problems with translational symmetry will 
he considered separately and the correct approxima
tions to use in such problems will he developed. 
We shall then find a lower value for the polaron 
ground-state energy. 

The above criticism does not apply to problems 
of localized electron states where V(r) contains a 
potential well binding the electron by means of ex
ternal forces, for example the problems of F and F 1 

centers, for in these cases there is no translational 
symmetry. 

If we compare the formula (25) for the F-center 
ground-state energy with the corresponding result 
of the multiplicative approximation 8 , we see that 

, 
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the second term of Eq. (25) is new and is always 
negative. Thus our approximation (3) gives a lower 
ground-state energy. The lowering of the energy is 
particularly large for crystals with a high dielectric 
constant. 

In the case of an F'-center there are two elec
trons (N = 2) attached to a positively charged crys
tal defect. 

V = - ~~~ (__!___ + _!__) + -:; , e" ' 
E r1 r2 n-1r1-r~i 

c~ = c~ = Cx, 

and ex, is given by Eq. (13). Then Eq. (20) gives 

Q F' (B) = J F' (B)-~~:! v~ (' (1 ---e-x')' dx. , (28) 
1 • rr J bx" + 1 --e--x 

G 

3 1d 0 ') ., ( ·;'(, ) 

ft, (p) = _P_n_" - "":= c' + - ~-z lf~ , 
m Yn: ~-

c' = 2c- __!:._ 
n'2" (29) 

We minimize Q F' with respect to (3 by going to the 

strong-coupling range and minimizing only the main 
term h' ((3), just as we did for the F-center. This 
gives 

mc 4 ( , 2'''z) 2 
EF' = -- -. ---;; c + ~ Jn:h- E 

In the strong-coupling range we keep only the term 

b F' x 2 in the denominator of the integrand, and ob
tain 

E me 4 ( , l''z)2 
F' =- :Jn:'/i.~ C + -E- -

~'>.52c1l w 

c' + l''z(s 
(32) 

This expression likewise differs from the result 
of the multiplicative approximation 9 only by the ap
pearance of the second term on the right. 

We have also studied the excited states of 
F-centers, for which the corrections to the results 
of the multiplicative approximation are significantly 
larger. These results were published elsewhere 10• 
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