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Asymptotic expressions for the tensors of the thermal conductivity and Thomson coeffi
cients in a strong magnetic field have been found. No special assumptions on the disper
sion law or collision integral are made in the derivations. 

I T IS KNOWN that the magnetic field changes not 
only the resistivity of a metal but also the heat 

conduction, the Thomson and Peltier coefficients, 

etc. 1 Using the techniques developed earlier 2, the 
dependence of the kinetic coefficients on a strong 
magnetic field can be determined. As in Ref. 2, we 
will not take into account quantization of the elec
tron motion in the magnetic field. The limits of the 
applicability of such a classical analysis are indi
cated in the reference cited. 

need merely bear in mind that if cp is a function of 
the energy only then (acp/at)field = 0. 

To find the kinetic coefficients, it is necessary 
to calculate the current density ji and the energy 
flow wi due to the electric field E i• and the temper
ature gradient ar ;ax;. If the addition to the equilib
rium Fermi distribution function 
fo = (e<•-~)!T + 1)-1 [e = 8 (p) is the electron 
energy, p the quasi-momentum; ( = ((T) the chemi
cal potential of the electron gas, and ((0) = ( 0 the 
limiting Fermi energy] is denoted by ft> then 

j; = 2e (2"7i)-3 ~ v;f1 (dp); 

w7 = 2 (2rr7i)-·3 ~ ev;f1 (dp). 

The function [1 satisfies the linearized kinetic 
equation which we write schematically 

(aft] + (at1) 
at) field at st 

(l) 

(2) 

Here, the first term on the left describes the change 
in the distribution function in a constant and homo
geneous magnetic field. In the notation of Ref. 2, 

However, this form will not need suit us later. One 

Now, let us put 

ato { E T a (e:- ?:) aT } f 1 = - a~ e h'h + aT -y axh Cf'h ' 

Then 

. (o)£ (obT jo . ]i = cr;h h + S;hu Xk, 

where 

00 

(n) 2\ n afo A ( ) d . 
cr ih = - e l 8 (k." ih e 8, 

0 

00 

es)~l =- Te2 ~ sn-:T (e: r_S_)a~iBih (s)ds = 

and 

0 

00 

- e2 ~ 8n ~; B;h (8) dr::, 
0 

VitphdS. 
v 

The functions 'I' k and cp k are the solutions of the 
following equations 

(a<)!h) (afo)- 1 ( a) (ato ) _ 
\(iF field+ \ 7k at st as h - Vft, 

(~tph) + (~l!l)-l ( _il__) (a~ COft 1- V1 
at field .aT \at st \aT · 1 - '' 

(3) 

(4) 

(5) 

(6) 

(7) 

which differ from each other only in the form of the 
component describing the change in the distribution 
function because of collisions. 
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If the collision operator is an energy 8-function, 
we see from (6) and (7) that 

(8) 

This holds in two cases: a) at temperatures high in 
comparison with the Debye temperature, when the 
collision integral is f/t 0 (t0 is the relaxation time) 
and b) for very low temperatures (the criterion de
pends on the purity of the metal) when elastic colli
sions between electrons and impurities play a fun
damental part. 

To express the experimentally-measurable coeffi
cients (resistivity, heat conduction, Thomson coef

ficient) in terms of ai~) and s ikn), let us write the law 
of conservation of energy for an electron gas. 

If Q denotes the internal energy of the electrons, 
then evidently 

(iJQ I iJt) + (iJw; / iJx;) = E ;j i· (9) 

We easily obtain from (4) and (9) 

integral depends on the temperature; second, be
cause of the temperature dependence of the electron 
equilibrium distribution function [0 • Since the ele c
tron gas is always strongly degenerate (T « 'D), 
a calculation of the first non-vanishing terms of the 
expansion of these coefficients in powers of the 

small parameter T / ' 0 is of interest. 
We will use the well known formula 4 : 

(13) 

[cp(B) is an arbitrary function of the energy]. This 
expression can be considered as an expansion in 
powers of the temperature if it is recognized that 
the chemical potential of the electrons ' is con
stant. However, the number of electrons n is con
stant. Consequently, the '-function of the tempera
ture, which can be found from the normalization 
condition 

CX) 

2 (2o.1i.r-3 ~ fo (s) (dp) = 2 (2d)-3 ~ f0 (s) g (s) de= n 
0 aQ (0)-1 · · { (o)-I (o) + 1 a ( (I) (0)-I )} . aT 

(il = aih ]i;k- ail Szk e 7Jf ah za li ] i ax 
k (n is the electron density), where 

-1 a {r (1) (1) (0)-I (0) 1 aT's ---a Sih- a;z azm Smh a·-- · 
e xi x" 

Hence, it is seen that 

(10) 

is the resistivity tensor, whose asymptotic form in 
a strong magnetic field was studied in Ref. 2; 

-I { (I) (I) (0)-l (0)} (ll) 
- e S;k- a;papq Sqh = "-ik 

is the tensor of the heat conduction coefficient*; 
and 

(0)-I (0) 1 a ( (I) (0)-I) __ 
ail sn.+-eat akpap; -tJ.;h (12) 

is the Thomson coefficient tensor. 
Let us note that relations (10)-(12) are always 

valid and are not related to the presence or absence 
of a magnetic field (see for example Ref. 3). 

All the kinetic coefficients depend on the temper
ature for two reasons: First, because the collision 

* As is known, the heat conduction of a metal is deter
mined not only by electrons but also by other "quasi
particles" in the metal (phonons, spin waves, etc.). 
Hereinafter we shall understand x.ik to mean only the 
electron part of the heat conduction. 

g (s) = ~ dS I v 
z(p)~e 

is the density of the levels in the energy interval dB. 
Denoting '( T) - ' 0 by ~. we obtain, using (13) 

(14) 

We have from (13) and (14) 
CX) 

~9(s)f0 (s)ds 
u 

~;• . rt2T2 [ g' (s)J = t!i (s) ds + - ':-'- (.?- _ __ + .. · • 6 ' ' g (s) e<, 
0 

Using the expressions obtained, we easily find 

(o) 2 {A (~ ) rt2T2 [A' (~' ) g' (Z:o) A" (:- ) l}· 
a ih = e ih ·~o - 6- il< ~o g (Z:o) - ~o • 

(1) 2 {A (~' ) r aih = e ik ~o. ·~o-

[ a (~' 1 (~' ) (g' (Z:o) a2 (~' 4. (r ))l~E-2 } 
- az:o ~of ih '-0 -i((,;) - az;~ ~o· tk ~o. J 6 . 

(.ol - -- - · s ds { a '\.' s;" - e iJT. B,h ( ) 
0 

rt2T [B' ., ) B (~' ) g' (Z:ol]} - ··3 ih (~o - ik ~o g(~~) · (15) 
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In obtaining the last formulas, we used the fact that 

A ik( d and B ik (8) are smooth functions of 8. The 
latter follows from (6) and (7). It can be shown that 
this is not so because Eqs. (7) contain derivatives 
of the Fermi function. However, if the general form 
of the linearized collision integral is taken into ac

count [see for example (8.18) of Ref. 1], it is easy 

to show that t/Jk and cpk do not have singularities at 
8 = 8o (as T -> 0). 

Using formulas (15), the first non-vanishing terms 
of the expansion in powers of T / (;0 can be obtained 
for the quantities of interest to us: 

a;k =e2 A;k (~0), x.;k = 1/ 3 <c2k2TB;k (~0), 

rc2k2T { -1 ' -1 ' ) fL;k = ----:3e (2Azi A"z -A a Bzk 

(' A-1B ) g' (~o) \ (16) 
- Oik - il lh g((~) j 

~. 

+ ~ Ai/ a~ ~ Bz" (c) dr::. 
0 

The last term in the expression for ll;k can be 
omitted, as a rule, since electron scattering by im
purities, which is practically independent of the 
temperature, plays a fundamental part at low temper
atures (which are of greatest interest). 

axx 

H2 

When condition (8) is satisfied, the expressions 
obtained are simplified considerably 

an, = e2 A;k (~0 ), x.;k = 1/ 3rc2k2T A;h (~0), 

fL;" = (•lk2T j3e) (2A!?A~z- Ai?A;"). 
(17) 

As is seen, the Wiedemann-Franz law, independent 
of the magnitude and direction of the magnetic field 
(see Ref. 3), holds here for each of the components 
of the conductivity and heat conduction tensors. 

The asymptotic form of the conductivity tensor 
aik [i.e., A;k((;0 )] was analyzed in Ref. 2 in a 
strong magnetic field, where it was shown that this 
asymptotic form is independent of the kind of colli
sion integral and is determined only by the topology 
of the equal-energy surfaces. Since the equations 

for cpk and W k differ only in the kind of collision 
integral, evidently the asymptotic expression for 
the tensor B;k((;0 ) differs from that for the tensor 
A ik( (;0 ) only by those factors of the corresponding 
powers of the magnetic field which depend on the 
kind of collision integral (see Sec. 3 of Ref. 2). 
Hence, the asymptotic form of the heat conduction 
tensor X;k(H) is similar to that of the tensor O"ik(H). 

If the z axis is directed along the magnetic field, 
then 

~J_ (rr:k)2 ec (n 1 -- n 2 ) 

3 e T H 

- ~ (rr:k)2 T I'C (nl- nz) 
3 e H 

H 

Here n1 (or n2 ) is the number of electrons (or 

"holes") 2• The expansion of the matrices aik in 
powers of 1/H starts with the zero term. If n1 = n2 , 

then M.xy""' l/H2 • 

Let us note that the Wiedemann-Franz law is al
ways satisfied [independently of condition (8)] for 
asymptotic values of the M. xy and a xy components 
independent of the kind of collision integral for un
equal numbers of electrons and "holes." A compari
son of the results of the present analysis concern
ing heat conduction with experiment is difficult. 
This is because of the scantiness of experimental 
data on simultaneous measurements of resistivity 
and heat conduction in strong magnetic fields and 
because the total heat conduction (which does not 
equal the electron heat conduction) is always meas
ured. However, the latter difficulty is automatically 
avoided if the following quantity is measured 

[xxy (H)- Xxy (-H)]/ [ Oxy (H)- Oxy (- H)J T, 

which must be asymptotically equal to the Lorentz 
number 1~ (rrk/~)2 for n1 of. n2 • Here, the phonon part 
of the heat conduction (which evidently is independ
ent of the magnetic field) drops out. 

As we saw, the asymptotic forms of the tensors 
M. ik and O"£k differ substantially in those cases when 
n1 -1 n2 and n1 = n2• It is seen from (16) that the 
asymptotic form of the Thomson-coefficient tensor 
is also related to the topology of the equal-energy 
surfaces. Generally speaking, its components de
pend on the kind of the collision integral. However, 
if n1 .,;, n2 , then 
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Here V(t;'6 ) = V1(t;'0)- V2(t;'0 ); V1 (t;"0 ). is the volume 

in momentum space occupied by the electrons; 
V2 (t;'0 ) is the VOlume "occupied,. by the "holes,,. 

As is seen, llxx and /lyy depend in this case on 
the angles between the field and the crystallo

graphic axes and are determined exclusively by the 
energy spectrum. If the open surfaces are substan

tial2, then llxx and /lyy are functions of the angles. 

f.lik is as follows: the llaf3 increase linearly with the 
magnetic field (a, '3 = x, y), and the f.liz approach 

saturation. Hence, a study of the asymptotic form 

of the Thomson coefficient tensor in a strong mag

netic field affords an additional possibility of in

vestigating the topology of the equal-energy sur

faces of the conduction electrons. 

If n1 ;= n2 [hence' V(t;'0) = V1((0 ) - ~(t;'0) = 0 and 
V'(t;'0 ) f: 0]*, then the asymptotic form of the tensor 1 A. H. Wilson, The Theory of Metals, Cambridge, 1954. 

2 Lifshitz, Azbel', and Kaganov, J, Exptl. Theoret. 

* There is no foundation for the assumption 
V'(1;, 0 ) = 0. For example, in the case of a quadratic iso
tropic dependence: 

m1(m2) is the effective mass of the electrons ("holes"). 

Phys. (U.S.S.R.) 30, 220 (1956), 31, 63 (1956); Soviet 

Ph;s. JETP 3, 143 (1956), 4, 41 (1957). 

M. Kohler, Ann. Phys. 6, 18 (1949). 
4 L. Landau and E. Lifshitz, Statistical Physics, 

Moscow-Leningrad, Gostekhizdat, 1951. 

Translated by M. D. Friedman 
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The ground-state energy is calculated by a variational method for the system defined by 
Hamiltonian (1). The trial wave-function is given by Eq. (3). The results are applied to 
the special cases ofF and F'-centers. In the limits of weak and strong coupling, the cal
culated energy agrees with the exact results of second-order perturbation theory and of the 
adiabatic treatment respectively. The calculation can be regarded as an interpolation 
through the intermediate coupling region. It is valid when the effective size of the local
ized electron state is large, and when the conditions of the continuum model of F and F 1 

centers are fulfilled. 

W E CONSIDER systems described by a Hamilton
ian of the form 

branch number t of the energy-surface, qx.t is the 

normal coordinate of the same vibration, e~t is 

the coupling-constant between this vibration and 
the ith particle, V(r1 , ••• , rN) is the potential of 

the interaction of the particles with each other and 

with external fields, and 
+ ~C~tq·xt'X_x (ri)+V (r1 , ... , rN)· 

(l) 

xit 

Here ri is the radius-vector of the ith particle, mt 

is its mass, cu>Gt is the vibration frequency of the 

continuum corresponding to a wave-vector "and to 

X:+,(ri)=( ~ sin(xri+ ~) 
2rc · 1 2 3 

Xj = L 'lj; 1 = ' ' ; (2) 

''i=0±1,±2, ... V=V 


