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· FlG. 7. Angular distribution of optical elastic scatter
ing. Parameters 1/a = 0. 71 x w-n em, E = 0.44 Mev, 
A= 100. 

JO 60 90 IZO !JO 180 

FIG. 8. Angular distribution of optical elastic scatter
ing. Parameters 1/a = 0. 71 X 10"13 em, E = 0.44 Mev, 
A =84. 
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Processes of resonance interaction between an electromagnetic field and a molecular 
beam and also auto-oscillation processes in a molecular generator are examined in the 
present paper. Unlike other papers, the case of a beam of monochromatic (with respect 
to velocity) molecules is considered in detail and the peculiarities of this case are elu
cidated. The result obtained by taking into account non-monochromatic molecules in the 
beam is discussed qualitatively. 

INCREASED STABILITY requirements have led to 
the development of a molecular generator in which 

the electromagnetic oscillations in the resonator are 

excited by radiation of excited gas molecules pass

ing through the resonator. The possibility of such a 

generator was indicated in 1952 by Basov and Pro

khorov 1• 2 • The molecular generator was almost si

multaneously developed by a group of American 

physicists 3• 4 and by Basov and Prokhorov in the 
U.S.S.R. Even before the experimental success of 

the molecular generator, Basov and Prokhorov sug

gested a theory of its operation5• 7, which in es

sence consists of the following. Using the theory 
of dispersion, and taking account of saturation ef

fects, the dielectric constant of the molecular beam 

passing through the resonator is determined. They 

then examine oscillatory processes in a circuit with 
a capacitor whose dielectric has the same constant 

as the molecular beam. The dielectric constant de

pends on the square of the electric field. Therefore 
this oscillatory process is described by a non-linear 
differential equation whose solution determines the 

amplitudes and frequencies of the oscillation. The 

theoretical method used by Basov and Prokhorov is 

not sufficiently complete and makes difficult an anal

ysis of more complicated processes connected with 

the operation of a molecular generator. We therefore 

give in the present work a more rigorous statement 
of the problem, on the basis of which a thorough ex
amination of molecular generator operation in the 
stationary state is made. We first examine the case 
of a single-velocity molecular beam (v = v0 ) and af

terwards give a qualitative evaluation of the effect 
of molecules with speeds other than v0 • 

1. In analysis of the operation of a molecular 

generator it suffices to examine two energetic states 



938 IU. L. KLIMONTOVICH AND R. V. KHOKHLOV 

of the molecules, which we shall call E 1 and E 2 • 

Then for the description of the molecular beam state 
in the resonator we shall use the density matrix: 

I C11 (x, t) 

c21 (x, t) 
c12 (x. t) I 
c22 (x, t) • 

(1) 

For definiteness we assume that £ 2 > £ 1 • The 
matrix elements Cu.and c22 determine at point X 

and at time t the density of molecules in states 1 
and 2 moving with velocity v0 • The matrix elements 
c12· and c21 determine the polarization vector p of 
the molecular beam, which polarization is due to 
molecular transitions between states 1 and 2 as a 
consequence of the action of the field. 

P (x, t) = P12 (t) C21 + P21 (t) c12• (2) 

where p12{t) and p21 (t) are the matrix elements of the 

molecular dipole moment. Let us denote by 

D (x, t) = C22 (x, t)- C11 (x, t) (3) 

the difference in density of molecules of velocity v 
in states 2 and 1 at the point x at the instant t. For 
D, C12. and C21 we have the following equations: 

aD 1 at + v aD 1 ax = - (2 1 ih) [p21 (t) C12 

- P1z (t) C2d E (t), (4) 

ac12 1 at+ v ac12 1 ax=- (1/ ih) P12 (t) DE (t), 
(5) 

aczll at+ voC21 I ox= (1 I ih) P21 (t) DE (t). (6) 

The x axis is directed along the axis of the reso
nator. Equations (4)-(6) are obtained from the gen
eral equations for the density matrix C ik ( x, t), in 
which account is taken of the kinetic energy of the 
molecules. We assume that the molecular beam does 
not interact with itself and that the interactions of 
the separate molecules with the field are determined 

by the expression -(pE), where pis the dipole mo
ment operator of the separate molecule, and E is 
electric field intensity of that normal component, 
whose frequency wp is close to the transition fre
quency W 21 = ( E2 - E 1 )/n. This normal oscillation 
has a homogeneous distribution of the electric field 
along the resonator. The direction of the E field is 
along the x axis. If the molecular-generator resona
tor is replaced by an equivalent circuit with a ca

pacitance shunted by a resistance, then the equa
tion for E has the following form: 

Here Q is the quality of the resonator and P the 
average polarization along the x axis. 

(7) 

If the generator resonator is replaced by a circuit 
with a series resistance as was done in Refs. 6 and 
7, we must add to the right half of Eq. 7 the term 
-4rr.(wp/Q)dP/dt. However, if we limit our examina
tion to an accuracy of Q- 2 ' we can ignore this term. 
Thus it is first necessary to find an expression for 
the polarization P of the molecular beam, and then 
substitute this expression into (7) to analyze the 
resulting solution. 

2. The beam polarization P(x, t), according to (2), 
is expressed in terms of the solutions of the system 
(4)-(6). Let us examine the solutions of this system 
in the case that oscillations are already established, 
assuming that the electric field strength is 
E = E0 .cos wt. In the steady state the distribution 
of the molecules does not depend explicitly on time. 
We therefore set aD/at= 0. If the expression forE 
is substituted into Eqs. (4)-(6), terms appear on 
the right which are rapidly varying in time (with a 
frequency w + w21 )., and slowly varying in time (with 
a frequency w21 - w = 0). Neglecting on the right 
hand side of the equations for D, C12 and C21 . the 
terms which are rapidly varying in time and assum
ing that av;at = 0, we obtain the following system 
of equations: 

v aD I ax= - (1 I ih) [p21ei8t cl2- P12 e-i8t c21] Eo, 
(8} 

acl2 I at+ v ac12 I ax= - (1lz ih) P12 e-illt DEo, 
(9) 

ac21 I at + vac21 I ax= (liz ih) P21 ei8t DEo· (10) 

In equations (8)-(10) we take it into account that 

pik(t) = pikeicuikt. These relationships will be 

solved with the boundary conditions: 

D=D0 ; C12 =C21 =0 fori x=O. (ll) 

The solutions of equations (9) and (10) satisfying 
the boundary conditions (ll) have the form 

cl2 (x, t) 
X 

=- P~/f:vo ~ exp {- io [t- ~ (x- x'>]}D (x') dx', 
0 (12) 
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c21 (x, t) 
X 

P21Eo \ { ., [t 1 · ')]} = '2ihv .) exp to --0 (x- x D (x') dx'. 
0 (13) 

Substituting (12) and (13) into Eq. (8), we obtain an 
equation for D(x) 

2E2 X 

dD P o \ a ( ') D ( ') d , -- = - -- COS -- X- X X X . 
dx h2v 2 • v 

(14) 

0 

The solution of Eq. (14) satisfying the boundary 
conditions has the form 

[ p2 E~ 132 ] 
D (x) = D 0 n 2h2 coskx+ 02 , 

(15) 

D.2 =p2E~jh2 +"f}; k=D.jv. (16) 

Expression (15) describes the level distribution 
of the constant-velocity beam molecules moving 
along the resonator, as a function of the detuning o 
and of other parameters. It follows from this that 
for a small detuning o there is a resonance action 
on the molecular beam: almost all molecules go from 
the upper level to the lower and back again as they 
move along the resonator. For large detuning the 
indicated transition is made only by a small part of 
the beam molecules: the function D(x) is almost 
constant along the resonator. 

We now calculate the polarization vector of the 
molecular beam. Substituting the expressions (12), 
(13) for C12 and C21 into expression (2) for the po
larization vector P, and using expression (15) for 
D(x), we find 

P (x, t) = - D 0 (p 2 E 0 / hD.2) [Q sin kx sin wt 

+ o (1- coskx) COS(I)t]. (17) 

From expression (17) we find the average polariza
tion along the resonator of the beam molecules mov
ing with constant velocity. 

P(t) = - D P2 Eo" [ 1 - cos 0.-r sin wt 
0 h Q.2 -r2 

~ 1 -sin 0.-r 1 0.-r J + O't 02 " 2 cos wt , 
(18) 

where '"L" = L/v is the transit time through a resona
tor of length L. 

3. Let us now proceed to analyze solution of the 

equation for the electric field in the case of a mo
lecular beam which is monochromatic in velocity. 
Using expressions (18) for P(t), we write Eq. (7) 
for E in the form 

d2E wp dE 
dt 2 +Q& 

2 21- cos n-. . + wpE = - B(o 02 ,.2 E 0 sm wt 
(19) 

2 ~ 1 - sin n-. 1 o.-. 
- Bw o't 02" 2 E0 cos wt. 

Here B = 417 D0p2 '"L" /h. Putting E = E0 cos r:ut and 
equating the sine and cosine coefficients to zero, 
we obtain a transcendental equation for the ampli
tude and frequency of the steady-state oscillations 

1 jQB = (l-cosfJ.'t)jfJ.2't2, 

w2 - w2 = B(l)2 o-: 1 -sin n-. I D.-. 
p Q.2-.2 

(20) 

(21) 

Expression (21) can be written in the following man
ner: 

(22) 

From (22) it follows that when the resonance fre
quency cup equals the frequency cu21 of the transi

tion in the molecule, the detuning is o = cu21 -w = 0 
and therefore the generator frequency coincides ex
actly with the frequency ())21 • In expression (22), 
for very large values of fh the second term is larger 
than the first. We therefore have approximately 

B 0 1- sin D.-. I D.-. (23) 
(ij p - (ij21 = - 2 't: J.l"-." 

Let us introduce the notation 

<D (x) = :2- ( 1- si~ x ), 

(24) 

Then 

The functions F(x) and <l>(x) are plotted in Figs. 1 
and 2. Figure 1 shows that for a molecular beam 
which is monochromatic in velocity there exist val
ues of the transit phase ih for which oscillation is 
impossible for any value of the coefficient QB. 
These transit phases have the values 277n, where n 
is an integer. In these cases there is no transfer of 
energy during the passage of the molecular beam 
through the resonator and all the active molecules 
entering the resonator leave it. For all other values 
of transit phase, self-oscillation is possible for 
sufficiently large values of the coefficient QB. 
From Figs. 1 and 2 it is seen that slightly above 
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FIG. 1 

the self-excitation threshold*, when 1/QB ::S ';i, self
oscillations are possible corresponding to small 
values of 0 1: that are negligible compared with 2 77. 
The generator frequency which is determined with 
the aid of Fig. 2 and relationship (23) is close in 
this case to the value w = W21 + 6Q f'..}W21 1: and ap
proaches w21 with an increasing margin above the 
self-excitation threshold. When the coefficient QB 
becomes sufficiently large that the inequality 
1/QB ::S 0.024 is satisfied, we have the possibility 
of generation for transit phases in the region 
211 < 01: < 477. It is essential to note that values 

of the transit phase corresponding to increasing 
branches of F(x) determine unstable regions of self-· 
oscillation, and therefore cannot be realized. For 
large increase in the intensity of a beam that is 
monochromatic in velocity, it becomes possible to 

generate in the transit phase region 477 < 01: < 611. 
So far we have been examining the case of a beam 

that is monochromatic in velocity. In reality the 
molecules have some velocity distribution. For a 
properly selected length of level-sorting quadrupole 
capacitor and for a small entrance aperture to the 
resonator, the molecular velocities concentrate 
more or less closely about the values v 0, v0/3, v0/5 
etc. If we limit ourselves to examination of the ve
locities v0, v0/3, vo/5 in the molecular beam the 
following changes will take place in the above der
ivations. Equation (25) takes on the form 

I / Q = d1B ( 't0) F (0't0) + d3B (3't0) F (30't0) + ... , 
(26) 

where d1,. d3, ••• are the relative molecular concen
trations with velocities v0 , v0/3, ... The presence 
of velocities v0 /3, v0 /5, etc., which differ from V0 

by 3, 5, etc., times, results in a so~~what different 
effective value for the expression B F. However, 
the new function F has almost the same character-

*The conditions for self-excitation differ from those 
developed in reference (2) by an unimportant constant co
efficient, which is the result of a different averaging of 
the beam polarization vector. 

J.tr 
FIG. 2 

istics as the function F for a beam monochromati~ 
in velocity. In particular, when the argument of F 
is equal to 277 n this function vanishes. B~ween 
these values of the argument the function F is dif
ferent from zero. Therefore there exist various iso
lated regions of transit phase for which oscillation 
is possible. The second relationship in (25) can 

also be rewritten in a form analogous to (26). We "" 
obtain in this case instead of (24) a new function <ll 
which qualitatively does not differ from the old one. 
Thus the existence of the several indicated molecu

lar velocities in the beam does not cause a qualita
tive change in the basic relationships (25) which 
determine the self-oscillatory process in the gener
ator. Taking account of the small spread in the ve
locities around v0 , v0 /3, v0 /5, etc., leads to a smear
ing of the function F: its minim~ increase and the 
maxima decrease; the function F will no longer van
ish for values of the argument 277n. ~owever, for 
small velocity spreads the function F retains its im
portant characteristic-the existence of various iso
lated regions of transit phase values for which os
cillations are possible. For a considerably larger 
spread of velocities all regions of transit phase 
which allow generation merge into one region. It 
should be noted that for small transit angles even a 
considerable spread in velocity has little effect 
on the function F(x) and it is therefore unnecessary 
in this case to take account of this spread. 

4. Let us now evaluate the importance of various 
accidental factors on the stability of molecular
generator operation. Let us first evaluate the order 
of magnitude which characterizes the oscillations 

in the molecular generator. Let Q = 10\ 11 = 103 

sec-1, w21 = 1.5 x 1011, 1: = 10-4 sec. For these values 

of the parameters the oscillation frequency for a 
slight margin above the self-excitation threshold is 
determined by the equation w = W21 + 6 Qf'../W21 1: 
and is w = w21 + 5. With increasing beam intensity, 
the oscillation frequency approaches w21 • The os
cillation amplitude can be evaluated from Eq. (19). 
We have for a transit phase 01: ,.. 1, E = hO/p 
= 105 CGS electrostatic units. The order of magni-
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tude of the output power is determined by the rela
tionship w = E2w21e/2Q where e is the volume of 
the resonator which is in order of magnitude 10 cm3 • 

Substituting here the given quantities we have 
W =·7 x 10- 3 erg/sec. To produce self-oscillation 
it is essential that B > 2/Q. Let us take therefore 
a value B = 10-3 • Then from Eq. (19) we have 
D0 = Bh/477p2 1: "' 109 cm- 3 • The number of mole
cules falling on an area of 1 cm2 is D0v = 4 x 1013 

em- 2 sec -1 • It should be noted that in real oper
ating conditions the molecules are concentrated in 
a narrow beam whose area is significantly smaller 
than the transverse area of the resonator. The value 
that has been used above is characteristic of an 
average molecular density in the resonator. The 
total number of molecules which enter the reso
nator in a unit time is N "'D0 vS "".1014 sec-1 where 

S is the transverse area of the resonator. The order 
of magnitude of the power emitted by the molecule 
is the same as the input power of the generator 
Nhw/2 = 7 x l0-3 erg/sec. This value agrees with 
the value obtained above. 

Let us evaluate the effect of a varying resonator 
temperature on the generator stability. The order of 
magnitude of resonator frequency variation due to 
unconstant temperature is determined by the follow
ing relationship: 

(27) 

where a is the linear expansion coefficient, R the 
radial dimension of the resonator, and !1T is the ac-

curacy with which the resonator temperature is main
tained. For example for invar we have a=l.5x10-6 • 

For small values of transit phase 

From (27) and (28) it follows that in order to main
tain a stability of 5 x 10-11 near the self-oscillation 
threshold it is essential to maintain the temperature 
constant with an accuracy of 10-2 • With an increase 
in beam intensity, the accuracy with which it is 
necessary to maintain the temperature can be de
creased by one order of magnitude. 
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Exact periodic solutions of the nonlinear generalized Klein-Gordon and Dirac equations are 
considered. The energy of the nonlinear classical meson field is compared with that derived 
from quantum theory. 

THE NECESSITY for nonlinear generalizations 
of scalar, spinor, and other field equations, as 

well as the possible importance of the nonlineari
ties in specific effects, makes desirable detai~ed 

examinations of this problem. Here we consider a 
purely classical unquantized scalar or pseudo-sca
lar neutral meson field. We make use of the exact 
solution of nonlinear wave equations in terms of 


