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Figure 7 shows the functions W(y) calculated for 

a resonant H (full curve) and for a constant H (dotted 

curve). Also shown is the experimental histogram 

obtained 11 at a proton energy of 650 Mev. Although 

the statistics are not very good, it is clear from Fig. 

7 that the experiment agrees better with a resonant 
than with a constant inte_raction. 

The author thanks M. G. Meshcheriakov, B. S. 

Neganov, V. P. Zrelov, I. K. Vzorov, and A. F. Sha

budin for information about their experimental re

sults, and also L. M. Lapidus for valuable advice 
and criticism. 
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A new method is presented for calculating nuclear interaction cross-sections for low en
ergy neutrons. Assuming that no absorption occurs in the surface layer, it is shown that the 
energy dependence of the cross-section at low energy is the same for a potential with dif
fuse boundary as for a rectangular well. The capture cross-section is larger for the diffuse 
than for the sharp boundary. Values of the parameters and of the nuclear potential are found 
which give satisfactory agreement with experiment over a wide range of nuclear weights and 
energies. 

I N AN EARLIER PAPER 1 w.e reported results of 
calculations of cross-sections for a semi

transparent nuclear model with diffuse boundary. We 
found good agreement of the capture of cross-section.."! 
transparent nuclear model with diffuse boundary. 
We found good agreement on the capture of cross

sections with experiment, up to an energy of a few 
million volts, with the foilowing yalues of the pa
rameters: 

V (r) = 20 MeV for r-< r 0 , 

V (r) = 20 exp {-- (r- r 0) / 1.4·10-13 } for r :;::> r 0 , 

r 0 + 1.4 · 10-13 = 1.25 · 10-13 A 11• em. 

The imaginary part (V(r) of the potential was varia

ble. However, it has since been reported 2 that the 

potential V(r) should be 42 Mev. Also it seems ap

propriate to compare the calculated results with a 
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wider range of experimental data, in order to test 
the diffuse-boundary model and to choose the most 
satisfactory set of parameters to describe nuclear 
matter. Therefore we decided to carry out calcula
tions of total cross-sections for the diffuse-boundary 
model at low energies. We found some devices which 
allow us to simplify the calculation to the point 
where numerical computations are avoided. 

I. CALCULATION OF PHASE-SHIFT 

Suppose V = V(r0 ) for r ~ r0 • A boundary condition 

r ·1 dv(2) dIn x'f, H(2) ] 
,, (·) ( ) l l+'l• x ''v 2 H 2 (x) A - - - - --,----'-'--.:.:: 

l l+'l• l v(2) dx dx 
l 

~I 

[ 
1 dv(1) dIn x'f, J-1( 1), J · 

y'l•v(1)I-f(l) (x) --- _z_-- A -1- I+!, 
· l l+'J. (1) dx l · dx 

l 

(7) 

Introducing 

f d I '/, H(1l d z = nx l+'f,l x, 

must be satisfied at r = r0 • The internal wave-function we find 

at r= r0 is evidently cr(l) lv(2)j2jA -S(2l_{*j2 
a = 1 _ 1 'f. '2 = 1 _ l l l l 

(1) (21+1)rr)J rIll JvPli21Az-S\ll-fzl2' 

with X = K0 r0 , I; = xr0 , where K and x. are the real 
and imaginary parts of the wave-number. We write 

(') dIn'¥/ jdX = (K/Ko) Az. (2) 

Then the boundary condition is 

1 d'Y\a) 
Az = 'Y(a) dX for r = r0 

l 

where x = kr, and X~ a) is the wave-function for 
r ~ r0 • But 

nr( a) nrll + uri 
I[ = T! Tj!I/, 

(3) 

where 'I'~ represents an outgoing wave at x = oo, and 
'1'~1 an ingoing wave. Substituting (3a) into (3), we 

obtain 

(8) 

(9) 

When v~ 2 > = v?> = 1 and S1<2> = s?> = 0, Eqs. (8) and 

(9) reduce to the formulas for a sharp boundary. 
The case in which V(r) is real for r ~ r0 is particu-

1 l . l h (2) (1) ar y s1mp e. T en v1 = v1 = vl, 

.2 _ 4 Im A 1 [Im S1 + hz] 
1 -j 'l/tl - - I A s f 12 ' 

~- ~- l 
qo) 

i 1 -'lltl2 = jl +e-2i<l!-2i'P z ,z z ' .A -s·- ~*j2 
Az--Sz-fz 

(11) 

fz = gz + ihz, Vz = JvzJe-i'P, 
(12) 

(4) H~~'J, = I H\~'J,I e-i<li. 

Obviously, 'I'} and '1'}1 can be written in the form 

nrl 'I H(l) ( ) (1) ( ) m•II 
T l = x- 2 1+'1. X Vt X , T l 

= x-'1• H\~, 1, (x) v~2 l (x), 

(5) 

(6) 

· h Ol <2> 1 f F E (6) d (5) w1t v 1 =vz = orx~oo. rom qs. an 

we obtain 

The function S l satisfies the equation 

dSzfdx + Sy + 2fzSz + (K0/k)2 V (x) = 0, (13) 

with V(x0 ) = L Separating the real and imaginary 
parts Sz = az + ibz in Eq. (13), we have 

da 1 
dx + a~- b~ + 2gz (x) az --2hz (x) bz 

Kz + R~V (x) = 0 (14a) 

db1 
dx + 2azbz + 2gz (x) bt + 2hz (x) az = 0.(14b) 
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By means of Eq. (l4b) we can express b1 in terms of 

al. The Hankel functions satisfy here the identity 

00 

2 ~ g1 (x') dx' =In hz (x). 
X 

Hence the general solution of the homogeneous part 
of Eq. (14b) is 

00 

bz = Chz (x) exp ( 2 ~ az (x') dx') , 
X 

and the solution of the inhomogeneous equation is 

00 

bz = hz exp {2 ~ a1 (x') dx'} 
X 

00 00 

X ~ exp {- 2 \ az (x") dx"} 2az (x') dx'. 
X X 

which reduces to 

00 

bz = hz (x) [ exp ( 2 ~ az (x') dx') - I]. (15) 
X 

Thus Eq. (10) can be written 

4 Im A 1h1exp {2 r a1 (x') dx'} 
_ r T.z/2 = _ x 

I I (ReAz-Gz-gz(x)J2+limAz-hzexp{2f az(x')dx'}r 
(16) 

and a similar expression holds for ll- TJ 1!2 • 

At low energy, the quantities bi and h1 b1 are small 

and Eq. (14 a) can be solved independently of (14b). 

The resulting value of az can then be used to deter
mine bz. 

00 

The function exp {2 ~ a1 dx} varies slowly with 
x 

radius and with energy. Hence we can interpolate 
between values of the function calculated at the 
ends of a wide interval. The main energy- depend
ence of the cross-section comes from the factor 
hz (x), which is a known rational function of the en· 
ergy. Also at low energy, when kr0 < l, the capture 
cross-section becomes proportional to x 21•1, as for 

a rectangular well. But it may happen that the cap
ture cross-section for a diffuse boundary is greater 
than for a rectangular well with the same depth and 
coefficient of absorption. 

2. COMPARISON WITH EXPERIMENT 

Detailed calculations of cross-sections were 
made 'Vith a boundary of exponential shape. With a 
well-depth V(O) = 45 Mev and a boundary shape 
e- a(r • rol where 1/ a = 1 x 10-13 em, the calculated 
total cross-sections at l Mev were much larger than 
the experimental values, and had too sharp maxima 
as functions of r0 • The imaginary part of the poten
tial was taken to be 0.03 V(r). The calculated cross
sections ai(r0 ) and Ua (r0 ) are shown graphically in 

Figs. 1 and 2. Consequently the later calculations 
were made with the value a= K0 = 1.43 x 1013 em - 1 • 
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FIG. l. Total cross-section as a function of r0 for neu
tron energy 1 Mev. Parameters 1/a = IQ-U em, t;: = 0.03. 
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FIG. 2. Capture cross-section as a function of r0 for 

neutron energy 1 Mev. Parameters 1/a = 10-u em, '= 0.03. 
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FIG. 3. Total nuclear cross-sections. The x axis represents atomic weight, the y axis 
neutron energy in units of 0.1 Mev, the z axisat/TTR2 • 

With this value of a we constructed surfaces show
ing the total cross-section as a function of energy 
and atomic weight (see Fig. 3). The imaginary frac
tion of the potential was taken to be 0.05 for r ~ r0 

and zero for r ;<:: r0 • The calculations with 
1/a = 1 x 10-13 em had shoWJ. that the vanishing of 
the imaginary part of the potential in the surface 
layer did not significantly change the behavior of 
the cross-sections. 

Satisfactory agreement with experiment was found 
with V(O) = 44 Mev and r0 = 1.25 x 10-13 A~ em. The 
minimum of the cross-section at l Mev for elements 
with A ""' 200 is clearly visible, as is the maximum 
for elements with A ""'90-100. The maximum at l 
Mev in the region of titanium is apparently missing, 
and the cross-sections for A = 150-180 are bigger 
aad less energy-dependent than the theoretical val
ues. The latter discrepancy is probably connected 
with the non-spherical shapes of nuclei in this re
gion. 

Capture cross-sections were also calculated at 
various energies. Unfortunately the experimental 
data at l Mev (see Fig. 4) are inconclusive. Elastic 
scattering through compound nucleus states is small 
for silver and gold, and a a ""' 2 'barns. The theory 
gives 2 barns for gold and 1.7 for silver. For iron 
the capture cross-section is probably greater than 
l barn, since the scattering into the spin-2 level at 
860 kev is 0.4 barn and the compound nucleus de-

cays predominantly into the elastic channel. The 

theory gives 1.8 barns for iron. Thus there is no 
contradiction with experiment. 

J 

2 \) 
5 6 7 8 tO 11 

FIG. 4. Neutron capture cross-section in units of 
11 (r0 + 1/ a)2 as a function of r 0 for energy 1 Mev. Param
eters 1/a = 0. 71 x 10-u em, ( = 0.05. 

At low energy one can compare with experiment 
the quantity (f'n/D). This comparison allows one to 
determine one relation between the real part of the 
potential and the nuclear radius. Fig. 5 shows the 
value of([' n/D) for the indicated values of the pa
rameters V(r), r0 , (1/a) and (. The maximum of 
(f'n/D) at A ""' 51 is evidently displaced to the right 
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FIG. 5. Ratio of reduced neutron width to level spac
ing. Parameters 1/a = 0.71 x 10-u em, ( = 0.05. 

of its theoretical position. But the data are very in
accurate. The height of the maximum does not dis
agree with the theory. In the region of the minimum 
at A "' 90-120 the agreement is also satisfactory. 
The lowering of the second maximum is attributable 
to non-spherical nuclei. For non-spherical nuclei 
the position of the maximum is a function of two pa
rameters, the major axis and the eccentricity of the 
ellipsoid. Since the eccentricity varies abruptly 
from nucleus to nucleus, the position of exact reso
nance may never be reached. For A "' 200-230 the 
experimental values of (rn/D) also agree with the 
theory. 

Nuclei in the range A = 90-100 should have some 
peculiar features. In such nuclei the p-wave maxi
mum should be visible in the cross-sections for 
forming a compound nucleus even in the energy
region 3-10 kev. 

In this region an increase in level density by a 
factor of 3 or 4 should be observable. There ought 
to be many weak levels, with neutron widths in
creasing rapidly with energy like E'( The observa-

tion of these levels seems to lie just at the limit of 
the resolving power of present-day neutron spectro
scopy. 

3. SOME CHARACTERISTIC ANGULAR 

DISTRIBUTIONS 

The most interesting angular distributions occur 
for rather slow neutrons with energies from 0.1 to 
0.5 Mev. In this energy-range inelastic scattering is 
unimportant, and the cross-sections for radiative 
capture in elements at the middle of the periodic 
table are small (at 0.5 Mev not greater than 0.2 barn). 
At these energies, the main interaction of a neutron 
with nuclei is therefore elastic scattering. The 
elastic-scattering cross-section a5 is equal to 
at -a,; "-'at. However, the angular distribution will 
be completely different for the two components of at. 

We have calculated the angular distribution of the 
optical component with the same values for the pa
rameters as were used in calculating the total cross
section. Figs. 6, 7, 8 show the results for energies 
0.11 and 0.44 Mev at A = 100 and for energy 0.44 
Mev at A = 84. In each case the angular distribution 
is strongly anisotropic. In Fig. 7 there is a peculiar 
secondary maximum at 180°, which is absent in 
Fig. 8. Since the calculation of angular distributions 
of elastic scattering proceeding through compound 
nucleus formation is not equally reliable, we have 
nothing to say here about this component. It should 
be possible to make statements about the compound 
nucleus component after investigating the distribu
tions in various special cases. 

FIG. 6. Angular distribution of optical elastic scatter
ing. Parameters 1/a = 0.71 x 10•15 em, E = 0.11 Mev, 
A= 100. 
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· FlG. 7. Angular distribution of optical elastic scatter
ing. Parameters 1/a = 0. 71 x w-n em, E = 0.44 Mev, 
A= 100. 

JO 60 90 IZO !JO 180 

FIG. 8. Angular distribution of optical elastic scatter
ing. Parameters 1/a = 0. 71 X 10"13 em, E = 0.44 Mev, 
A =84. 
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Processes of resonance interaction between an electromagnetic field and a molecular 
beam and also auto-oscillation processes in a molecular generator are examined in the 
present paper. Unlike other papers, the case of a beam of monochromatic (with respect 
to velocity) molecules is considered in detail and the peculiarities of this case are elu
cidated. The result obtained by taking into account non-monochromatic molecules in the 
beam is discussed qualitatively. 

INCREASED STABILITY requirements have led to 
the development of a molecular generator in which 

the electromagnetic oscillations in the resonator are 

excited by radiation of excited gas molecules pass

ing through the resonator. The possibility of such a 

generator was indicated in 1952 by Basov and Pro

khorov 1• 2 • The molecular generator was almost si

multaneously developed by a group of American 

physicists 3• 4 and by Basov and Prokhorov in the 
U.S.S.R. Even before the experimental success of 

the molecular generator, Basov and Prokhorov sug

gested a theory of its operation5• 7, which in es

sence consists of the following. Using the theory 
of dispersion, and taking account of saturation ef

fects, the dielectric constant of the molecular beam 

passing through the resonator is determined. They 

then examine oscillatory processes in a circuit with 
a capacitor whose dielectric has the same constant 

as the molecular beam. The dielectric constant de

pends on the square of the electric field. Therefore 
this oscillatory process is described by a non-linear 
differential equation whose solution determines the 

amplitudes and frequencies of the oscillation. The 

theoretical method used by Basov and Prokhorov is 

not sufficiently complete and makes difficult an anal

ysis of more complicated processes connected with 

the operation of a molecular generator. We therefore 

give in the present work a more rigorous statement 
of the problem, on the basis of which a thorough ex
amination of molecular generator operation in the 
stationary state is made. We first examine the case 
of a single-velocity molecular beam (v = v0 ) and af

terwards give a qualitative evaluation of the effect 
of molecules with speeds other than v0 • 

1. In analysis of the operation of a molecular 

generator it suffices to examine two energetic states 


