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A model is considered in which a spinor field interacts with a pseudoscalar field, the 
classical pseudoscalar field being independent of the coordinates. Owing to the proper
ties of the model the equations for the Green function are considerably simplified, and this 
makes it possible to find their exact solution. An investigation of the Green function is 
carried out. 

I N VIEW OF the great difficulties in principle that 
stand in the way of the solution of the equations 

of quantum field theory, methodological interest at
taches to the study of particular models for which 
exact solutions of the corresponding equations can 
be obtained. A large number of papers 1- 9 have been 
devoted to the consideration of various models. The 
model of a renormalized field theory proposed by T. 
D. Lee 2 is studied in some papers 3 •4, while 
others5 •6 consider generalizations of this model or 
use Lee's idea to construct a new modei7• 8 . Con
sideration has been given to a model of a meson 
pair theory 9 and to a number of other theories. 

The purpose of the present paper is the investiga
tion of a new model, in which the equation for the 
Green function of the fermion can be solved exactly. 

I. STATEMENT OF THE MODEL 

We consider an interaction of p seudoscalar (for 
simplicity, neutral) bosons with fermions, which is 
characterized by the Lagrangian 

L (x) = g: '¥ (x) "(5 '¥ (x):? (x) + M (x), (l) 

where M(x) depends on the operator cp(x) of the 
boson field and can include a "classical source" 

term ] (x) cp(x) and also counter-terms for renorrnali
zation. The model considered is such that the clas
sical boson field does not depend on the coordinates. 

Abrikosov and Khalatnikov 10 have examined tb:e 
point interaction 

g'¥ (x) r '¥ (x)? (x) 

as the limit of the "smeared-out" interaction 

g ~ 'F' (x) r '¥ (y)? (z) K (x- y, X- z) dy dz 

with limiting momenta A.p and \p satisfying the con
dition A.p » \p· In terms of this two-limit technique 
the model we have studied corresponds to the case 
in which the limiting momentum \p of the boson is 
equal to zero and the limiting momentum A.p of the 
fermion has gone to infinity. 

To find the Green function of the fermion we 
employ the formulas obtained by Bogoliubov 11, 

which express the Green function G (x, rl f) in 
terms of the Green function G c1 (x, y I cp) of a single 
fermion in the classical field cp. In momentum 
space they have the following form 1: 

X exp { g ~ d~ ~ dp dq Sp y5 G cl(p- q, pI f3<p) 'P (q) + ~ M (p) dp} 
(2) 
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(m+il'-kfL) Gct(k, k'Jr.p)-g"[5 ~dq Gct,(k-q, kjr.p)r.p(q) =o(k-k'), 

[ m +"[I'- kl'- + ~ dp ll'- PI'- r.p (p) llcp ~p) - g "[5 ~ dp r.p (p) J Gct-(k J r.p) = 1. 

(3) 

(3') 

Here g = g (2nY\ and the matrices y and scalar 
products are defined as follows: 

"[k = ~ak (k = 1, 2, 3), j 4 = i~, 

.is=i1l2la~· AB=A4B4+AB. 

.In the model under consideration the limiting mo
mentum A¢ of the boson is equal to zero, i.e.,. the 
boson is, so to speak, smeared over the entire 
x-space, and the limiting momentum A.p of the fer
mion has gone to infinity, i.e., the fermion is a 
point particle. If we study the behavior of the 
Green function of the fermion at momenta satisfy
ing the condition k2 » A¢, our present model is the 
limiting case for A¢ -> 0 •. 

In this model cp(x) does not depend on x, so that 
we get the required formulas if we replace cp(p) by 
cp8(p), the variational derivative 8/oCf by the ordi-

nary 'd/Clcp, and the Feynman integral ~ocpF(cp) by 
0') 

the integral over a single varigbl·e, ~ dcpF(cp). Here 

also the Green function D(p, p') of the free boson 
field goes over into d X o(p)o(p'), where dis a con
stant. The equation for Gcl(k, x: cp) now takes the 
simple form 

(m+-rl'-kl'--gr5 r.p)'Gcl(k,x;r.p)=l. (4) 

The unrenormalized Green function G(k; ]) is then
expressed in terms of Gcl(k; cp) in the following 
way: 

r dcpe-"''12dGci (k; cp) exp {at.g' S d~ S dp Sp Ys Gel (p, p; ~cp) cp + M (cp; J)} 
G (k" J) =-co o a , (5) 

' 0) { 1 } S dcpe-9'/2d exp llt.g' S d~ S dp Sp y5 Gel (p, p; ~cp) cp + M (cp; J) 
-oo . on 

where 

and here limo A= o(O), i.e., the a-function of 
A-oo 

zero; g' is the priming coupling constant. In Eq. 
(5) the integral with respect to p is taken over a 
finite four-dimensional region n, prior to carrying 
out the renormalization. 

On the other hand, the expressions obtained in 
our model for the Green function of the fermion can 
be regarded as a sort of approximate Green func
tion of the nucleon of quantum field theory, if we 

assume as a first approximation cp(x) = const. It 

0) 

(6) 

was just this approximation that Feynman used to 
estimate the role of nucleon-antinucleon pairs. 

2. ONE-PARTICLE APPROXIMATION 

Let us consider the so-called one-particle ap
proximation, which, in the language of Feynman di
agrams, reduces to the neglect of closed fermion 
loops. In this approximation the Green function 
G(k) is very simply related to the Green function 
Gcl(k; cp) of a single fermion in the classical field 
cp, namely: 

G (k) = (2rrd)-'1• ~ e-'l'2 i2d dr.p GKJI (k; r.p). (7) 
- 0) 

We use expression (6) and l?et 
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co 

~ m-y k 
G (k) = 2 (27td)-'lz drpe-"'' I 2d 1-L 1-L • 

m2 + k2 + g2 rp2 
0 

The integral m Eq. (8), convergent in the region P L 0, can be expressed in terms of the probability 
integral 

.~ 

<I> (x) = ~7t ~ dte-t'. 
0 

On this basis we write the Green function G(k) in the form 

G(k) = 

for g2 f. 0. 
Let us find out whether the function G(k) can be represented as a converging series in powers ofg2 • 

For this purpose we write G(k) in a different way, namely 

co 
m-y., k., ~ -G (k) = ... ... dxe-x (m2 + k2 + 2dg2 x)-'lz. 
V m2 + k 2 

0 

Integrating by parts n times we get 
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(8) 

(9) 

(10) 

(10') 

co 

X~ 
0 

e-x dx ( )/ } . 
(m2 + k2 + 2dg2 x) 2n+3 2 

Let Sn be the sum of the first (n + 1) terms of the expansion in power of g2 ; then 

ro 

lim (g2)-n [G (k)- Sn] = limg2 ~n + 1)!! dn+l C e-x dx = 0. 
g'- o ii•- o m2 + k2 ~ (m2+k2 + 2dg2 x)(2n+3)/2 

From this it follows that G(k) can be represented by the following asymptotic series 

(11) 

This series is of the type summable by Borel's method 13 • 14 • This means that from the coefficients 
of the asymptotic expansion one can recover the original function by using the generalized Borel meth· 
od. To show this, we represent unity in each term of the series (11) as 
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00 

= V~rrd d~n- (2n~1)!! ~ e-cp'/2drp2nd'f. 
0 

We interchange the order of summation and integration and obtain 

00 

2 m - y., k., ~ 00 
- 2 ( m2 )n G (k) r r e-'1'' I 21 d(!), "' g n - ~"'-'--~ 

~ Y2rrd m2 +k2 LJ m2 +k2 • 
o n=O 

We then write unity in each term of the series (12) in the form 

00 

= - 1- \ e-x xn dx 
n! ~ ' 

0 

interchange once more the order of summation and integration, and get the convergent series 

G (k) = 

We thus recover the original function (8) from the asymptotic series (ll) by using the generalized 

Borel method. 

(12) 

It must be remarked that in the case of the symmetric (not the neutral) theory the Green function of the 

fermion must be written as follows: 

00 

G (k) = ~ dx (m- T!J.k!J.) e-(m'+k')x ( 1 + 2dg2x)-'1•. 
0 

3. THE EXACT GREEN FUNCTION OF THE FERMION 

For our model it is possible to find the exact Green function of the fermion, neglecting none of the 
F eynman diagrams. 

(13) 

First let us consider the nonrenormalized Green function C(k). We substitute into Eq. (5) the function 

Gcl(k; cp) in the form (6) and get 

G (k) 

Since the model under consideration corresponds 
to a certain degree to the behavior of the nucleon 
Green function of pseudoscalar meson theory for 
large k', i.e., very far from the pole k' = m2 , the 
mass of the fermion should be set equal to zero. 

(14) 

But we do not do this, in order to avoid divergences 
of the type of the infrared catastrophe. 

If we carry out the renormalization 
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the Green function G(k) degenerates into 

i.e., into the Green function of the free fermion 
field. This occurs because of incorrect perform

ance of the renormalization. In the carrying out 
of the renormalization there are certain peculiar 
features, owing to the nature of the model, i.e., 
to the fact that all the virtual mesons transfer only 

zero momentum. Associated with this are diver
gences of the form 8(0). There are also diver
gences in those Feynman diagrams that involve 
fermion pairs, i.e., in the boson self-energy dia
grams, the diagrams of boson-boson scattering, 
and also the corresponding overlapping diagrams. 

Owing to the presence of these two types of di
vergences we carry out the renormalization in two 
stages: first we renormalize the fermion Green 
function 

and corresponding to this we renormalize the 
charge, and then, in the second stage, we remove 
the ordinary divergences associated with the fer
mion pairs. 

To carry out the renormalization 

one must either add to the Lagrangian a counter
term having the operator structure of the free fer
mion field, i.e., a term of the form 

The divergent part of the coefficients A and B is 
uniquely determined, but in the determination of the 
finite parts there is a certain arbitrariness. As is 
well known, for the term B cp4 this leads to the ap
pearance of an additional coupling constant. The 
arbitrariness in the determination of the finite part 

or predetermine the pairing of two fermion opera
tors in the following way: 

In both cases this leads to the charge renormaliza
tion g" = (8A_m4 t 1g 1 • 

To carry out the second stage of the renormali
zation we use the counter-terms B cp4 and A cp2 , 

where A and B are certain constants that go to in
finity as the region of integration n is extended to 
the entire four-dimensional space. The term B cp4 

corresponds to the direct interaction of bosons; a 
counter-term of this form is necessary in carrying 

out the renormalization in pseudoscalar meson the
ory. In our case it is contained in Jt'(cp). The 
counter-term Acp2 is obtained by the predetermina
tion of the T-product of two boson functions (cf. 

Hef. 15) and occurs in the expression for the fer
mion Green function in the form 

The presence of these two counter-terms makes it 

possible to cancel from the integral 

the terms proportional to cp 2 and cp4 , which diverge 
for n .... oo, with the result having the appearance 

(15) 

of the coefficient A exists only in our model and is 
due to the absence of the condition 

imposed in field theory. In view of the presence of 
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this arbitrariness we can subtract from the expres
sion (15) some finite function N(cp) = acp2 + bcp4 • 

As the result of the renormalization, the Green 
function G'(k) takes the following form 

cp2} N (cp)- 2d dcp 

(16) 

We evaluate the integral in the exponential function and obtain the final expression 

where {1 and {2 are arbitrary constants. The inte
grals over cp converge for k2 2. 0, and the values of 
the constants {1 and {2 cannot affect the conver
gence of these integrals. 

From these considerations it can he seen that 
the renormalization procedure can he carried out 
consistently without the use of perturbation theory. 

The properties of the propagation functions of 
fermions and hosons and of the renormalization 
constants have been studied by Lehmann 16 , Gell
Mann and Low 17 , and Kallen 18 . 

Lehmann considered a neutral pseudoscalar field 
cp(x) interacting with a spinor field 'P(x). Without 
making any special assumptions about the form of 
the interaction, hut assuming that the theory is 
relativistically invariant and that the energy oper
ator possesses a smallest eigenvalue, which is 
normalized to zero, he obtained the conditions that 
must he satisfied by the elements of the suitably 
written propagation functions and renormalization 
constants. 

It is of interest to write our fermion Green func
tion G'(k) in the form given by Lehmann and ex
amine whether these conditions are satisfied. If 
we take into account our notations and the proper
ties of the model considered (absence of a discrete 
level at P = m2 ), Lehmann's formulas can be writ-

(17) 

ten in the following way: the fermion Green function 
has the form 

00 

G' (k) = ~ d. (x2) (x- y P. k~: <;:)- P2 (x2) ' (18) 

m' 

where p1 (x.2)and p2 (x.2),defined for positive values 
of the argument, must satisfy the inequalities 

The renormalization constants have the form 

00 

z;-1 = ~ PI (x2) d (x2), 
m• 

00 

om= Z2 ~ [(m- x) P1 (x2) + P2 (x2)] d (x2), (20) 
m' 

where z2 must satisfy the inequality 

Z2 >- o. (21) 

In order to get G'(k) in the form (18), we make 
in Eq. (17) the change of variable x. 2 = m2 + g2 cp2 , 

valid for g2 ,f. 0; then 
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(x.- y !" k!")- (x. -- m) 

x2 + k2 
( 

x2 \-7t'(x'fm')' , -; __ ) e-x /2g d 
m2 

(22) 

here x ... = (x2 )'t2 and, for simplicity, [ 1 '== [ 2 = 0. Comparing Eqs. (22) and (18), we get 

It can easily be seen that p1 ( x 2 ) and p2 ( x 2 ) satisfy 
the conditions (19). Substituting the values (23) for 
p1 and p2 into Eq. (20), we get 

Z2 =I, om= 0. (24) 

The fulfillment of the conditions (19) and (21) 
shows that our model is free from internal contra
dictions. 

It has been shown by Lehmann that if 

00 

~ Pl (x2) d (x2) < oo, 

m' 

then at large momenta the exact Green functions ex

hibit the same behavior as the free Green functions. 
In our model this integral is equal to unity, so that 

(23) 

the fermion Green function G'(k) behaves like 1/yk 
at very large momenta. 

From the consideration of the fermion Green func
tion G'(k), taken in the form (17), it can be seen 
that G'(k) cannot be represented as a convergent 

series in powers of g2 • Moreover, neither in the 
numerator nor in the denominator of (17) can the in
tegrand be expanded in convergent power series in 
g2 • It turns out to be impossible to introduce a fi
nite number of supplementary integrations over the 
parameters in such a way that the integrand could 
be represented in the form of a convergent series in 
powers of the interaction constant g2 • This sug
gests that the series of perturbation theory cannot 
serve as the basis for carrying out any investiga
tions in pseudoscalar meson theory. 

We proceed further to write G'(k) in the form 

G' (k) (25) 
00 d ( 2) ( 2 )-"' (x'fm')' _ \' x _':___ e -x')2g'd 
j Vx2-m2 m2 

m' 

valid for g2 I= 0. From this expression it can be 
seen that both in the numerator and in the denomi
nator the integrands can be expanded in series of 

inverse powers of the coupling constant. These 
series under the sign of integration over x" are con
vergent, and even if one carries out the integration 
term by term each term of the series obtained will 

be finite. 
It must be remarked that the contribution from the 

polarization of the vacuum is included in the first 

term of the expansion in inverse powers of the 
coupling constant; the vacuum polarization does 
not occur in the perturbing term. 

If in the case of the one-particle approximation 
one expands the integrand in a series of inverse 
powers of the coupling constant, then after integra
tion each term of the series, except the first, will 
be infinite. This leads to the conclusion that the 
inclusion of the vacuum polarization decidedly 

strengthens the coupling. Moreover, it follows from 
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a consideration of Eqs. (17) and (25) that the strong
coupling approximation is in better correspondence 

with the nature of the interaction of the type Ys than 
the weak-coupling approximation. 

The model we have considered gives an idea of 
the behavior of the Green function of the nucleon in 
pseudoscalar meson theory in the region k 2 » m\ 
i.e., far from the pole k2 "' m2 • F eynman 1 2 calcu
lated the polarization of the vacuum in the approxi
mation cp(x) = const; on the basis of the study of 
our model it can be said that his conclusion about 
the large part played by the polarization of the 
vacuum relates only to the region k2 » m2 • 

In conclusion I express my deep gratitude to 
Academician N. N. Bogoliubov for direction and 
help in the work, and also to S. M. Bilen'kii, N. P. 
Klepikov, L. I. Lapidus, and N. A. Chernikov for 
interesting discussions. 

1 V. G. Solov'ev, Dokl. A.kad. Nauk SSSR 108, 1041 
(1956). 

2 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
3 G. Kallen and W. Pauli, Kg!. Dansk. Mat. Fys. Medd. 

30, No. 7 (1955). Y. Munakata, Prog. Theoret. Phys. 13, 

455, ( 1955). 
4 N. N. Bogoliubov and D. V. Shirokov, Dokl. A.kad. 

Nauk SSSR 105, 685 (1955). 

5 H. Umezawa and A. Visconti, Nuclear Physics 1, 20 
(1956). 

6 K. Tanaka, Phys. Rev. 99, 676 ( 1955). 
7 B. Bosko and R. Stroffolini, Nuovo cimento 2, 133 

(1955); 3, 662 (1956). 
8 S. Machida, Pro g. Theoret, Phys. 14, 407 ( 1955). 

9 Vi. Thirring, Helv. phys. Acta 28, 344 (1955). 
10 A. A. Abrikosov and I. M. Khalatnikov, Dokl. Akad. 

Nauk SSSR 103, 993 0955). 
11 N. N. Bogoliubov, Dokl. A.kad. Nauk SSSR 99, 225 

(1954). 
12 R. Feynman, Proc. Fifth Rochester Con£. (1955). 
13 E. T. Whittaker and G. N. Watson, A Course of Mod

em Analysis, Part I. 
14 G. Hardy, Divergent Series. 
15 N. N. Bogoliubov and D. V. Shirkov, Prog. Phys. 

Sci. 55, 148; 57' 3 (1955). 

16 H. Lehmann, Nuovo cimento 11, 342, ( 1954). 
17 M. Cell-Mann and F. Low, Phys. Rev. 95, 1300 

( 1954). 
18 G. Kallen, Kgl. Dansk. Mat. Fys. Medd. 27, No. 12 

(1953); Helv. Phys. Acta 25, 417 (1952). 

Translated by W. H. Furry 

222 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 5 DECEMBER, 1957 

Extension of the Spin-Wave Model to the Case of Several 
Electrons Surrounding Each Site 

IU. A. IZIUMOV 
Ural' State University 

(Submitted to JETP editor December 5, 1956) 

J. Exptl. Theoret. Phys. 32, 1058-1064 (May, 1957) 

The energy of a weakly excited state of a ferromagnetic or antiferromagnetic crystal in 
which each site is surrounded by several electrons is calculated by the method of approxi
mate second quantization, applied to a system consisting of two types of interacting Fermi 
particles. It is found that besides the usual excitations of the ferromagnon-antiferromagnon 
type, some additional excitations, which depend weakly on the quasi-momentum, appear in 
these systems. A physical interpretation of these excitations is proposed. 

I THE PICTURE OF a weakly excited state 
• of a ferromagnetic or antiferromagnetic crystal, 

when there is only one magnetically active electron 

at each lattice site, is now fairly well understood. 
In the approximations of the spin-wave model it is 

possible to approximate the energy of a weakly
excited state of these crystals by the energy of an 
ideal gas of separate Bose-type quasi-particles
ferromagnons 1 antiferromagnons 2• 3• 4 obeying 
the dispersion laws 


