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p1(p"; %Vcqdvd)in just the same way that Aa(nc) 
is related to p'(nc, Pc; 0, 0, 0, 0). They would give 
the mean values of certain spin operators in an en­
semble of particles with momenta in the range 
(pc, Pc+ Ap). But the mean values so obtained 
would depend not only on the nature of the spin 
state, but also on the number of particles in the en­
semble. Therefore the quantity used to character­
ize just the spin state is the mean value of the 
operator A q1J (for particle c, for example), calcu-
1 ated for one p arti de: 

Aqv (pJ = (ic il Aqfj ic) PnT (nc' p~; q, '1, 0, 0) I Acr (nc) 

= (ic \\Aq 1\ iJ p (nc, pc; qv 00) I p (nc' pc; 0, 0, 0, 0). 
(11.5) 
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Processes arising in EO transitions in nuclei are considered. Equations are derived for 
the probabilities of shell electron conversion, pair production, two-photon transitions, and 
electron scattering cross section involving excitation of the EO nuclear transition. The 
calculations are carried out with Coulomb functions of the electron with allowance for the 
finite dimensions of the nucleus. The conversion probability in an EO nuclear transition 
is compared with the competing E2 and M1 nuclear transitions. Some estimates are given 
for the EO nuclear transition matrix element for various single-particle and collective nu­
clear models. 

sINGLE-PHOTON NUCLEAR TRANSITIONS be-

tween states of zero spin are forbidden by the 
law of conservation of angular momentum. In this 
case the radiation transition occurs by emission of 
two (or more) quanta. A distinction is made between 
two types of transitions: the MO-transition, with a 
change in parity (O± .... o+), and the EO transition, 

in which parity remains unchanged (0 ± --> 0 ±). In 
the second case, shell electron conversion or pair 
production is .possible in addition to the two-photon 
transition. The EO conversion differs substantially 
from other multipole conversion processes in that 
the monopole potential is localized in the region of 
the nucleus, while in other conversion processes 
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the region of the nucleus makes a relatively small 
contribution. Since the Coulomb potential on the 
surface of the nucleus is approximately mc2 even at 
low values of Z, the motion of the electron in the 
vicinity of the nucleus is essentially relativistic. 
The calculations must thus be made with rela­
tivistic electron functions. In addition, the field 
in the vicinity of the nucleus differs substan­
tially from the field of a point charge, leading to a 
considerable local variation in the electron wave 

function compared with the functions in the field of 
a point charge. The calculations of the monopole 
conversion probability must therefore contain allow­
ances. for the finite dimensions of the nucleus (in 
the case of a point nucleus, the EO conversion tran­
sition is strictly forbidden). EO nuclear transitions 
with electron conversion and pair production were 

d. d . . . . l-7 H stu 1e m many mvestJgatwns . owever, 
Fowler's calculation 1 was made in a non-relativistic 
approximation, while the remaining works 2- 7 are 
based on the Born approximation or fail to allow for 
the finite dimensions of the nucleus. It is interesing 
to find out how substantially the effect of the nu­
clear dimensions influence the results obtained. We 
shall give below the calculated values of the proba­
bilities of many processes connected with the EO 
nuclear transition. The nucleus is considered as a 

'/, '/, sphere of radius R0 = r0 A 3 = 1.2 x 10-13 A 3 em, 
with a uniform volume charge density. The shield­
ing effect of the atomic electrons is neglected. In 
the processes considered here the electrons do not 
have too high an energy, so that kR 0 « 1 (k is the 
electron wave vector), thus restricting the applica­
bility of the results to electron energies E ~ 15 Mev 
for heavy nuclei. Retardation is neglected. The 
calculations are in relativistic units. The wave 
functions of the electron in the continuous energy 
spectrum are normalized to a unity energy interval. 
The formalism of the spherical spinors, developed 

by Berestetskii et al 8 , will henceforth be used 
everywhere. The initial state of the system is de­
signated by the index 1, the final state by 2. 

I. WAVE FUNCTION OF AN ELECTRON 
IN THE FIELD OF A FINITE NUCLEUS 

Our calculations require wave functions of an 
electron in the field of a finite nucleus. These func­
tions can be readily obtained by joining on the sur­
face of the nucleus the regular solution of the Dirac 
equation for the region r < R0 for each partial wave 
(j, A, l = j +A), namely 

with the general solution to the equation in the re­
gion r ~R0 , which is a superposition of the regular 
tj;i Jl- r.Jy) and irregular tj;i Jl- r..(y) solutions of the Dirac 
equation for the field of a point charge (see Refs. 
9-11). The constant Ai r)s determined from the 

boundary conditions. The first to use this method 
to calculate the effect of the finite dimensions was 
Sliv 12 • Let us evaluate the constant A(t-. with an 
accuracy to approximately (kR0 ) 2 : 

} r=R,' 

00 

x = r I Ro; <I>(2A) = '\1 a(2A) x2v. 
1 ..:..J v • 

v=O 

00 

(I>~2A) = ~ b~2A) X2v. 

v~o 

The series ¢ 1 and <P2 converge rapidly and if an ap­
proximate accuracy of 5% is specified, one need 
merely take the following terms (at x = 1): 

'A=+ 112 : 

<I>i+l = 1- w2j6 + Ze2w 1 15 + w4j120, 

R0<I>~+) = wj3- Ze2j10- w3j30; 

) - lj. 
"-- 2' 

R0<I>l-) =-wj3 + Ze2j10 + w3 j30, 

<I>~-)= 1-w2j6 + Ze2wj15 + w41120. 

Here w = 1.5 Ze2 + eR0 , where E is the total elec­
tron energy. 

For further calculations it is convenient to nor­
malize the functions t/;j) .... (y) so that the normaliza­
tion coincides with that required for the analogous 
process in the point-charge representation. The 
functions {j)....( ± y, r) and gi A ( ± y, r) for the bound 
and free state of the electrons have been derived by 
many workers (see, for example, Refs. 9-11). 

The constants Ai A for the continuous and dis-
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crete spectrum are readily obtained by substituting 

the functions. 
l) Electron in bound state; shell n, j, A; 

A N Ry-j-'J.s (R )· 
jl.n = jn 0 it. 0 ' 

here at A =- ~ 

S· ~ (1- F:2)''"[n' (n'+2y)-(N -x)2] 

J/. ~ (1- ~;)'/• (n' + 2y + N- x) <D~-) + (1 + €)'1• R0<Di-) [N- 2y- n'- x}' 

at A=+~ 

(1- €2)'/z [n' (n' + 2y)- (N- x)2] 

Sjt. = (1- €)'1• [n' + 2y + N- x] R0<D~+l + (1 + F:)'I•<Di+l [N- 2y- n'- x] ' 

N. = ( r (2y + 1 + n') )''• 1 (2Ze2\Y+'I• 
Jn \ n'! N (N- x) r (2y + 1) N ) ' 

2) Electron in continuous spectrum of energy 8 > 0: 

at A=-~ 

at A=+~ 

S· (sR) = { (€ 2-1/12 [Re Qi'- (y) Im Qit. (- y) -Re Qit. (-y) Im Qit. ( y)] )_ 

J/. 0 (e: + 1}'12<1Ji+l Re Qjt. (- y) + (e: -1)' 1 •Ro<D~-t-) lm Q11. (- Y) Jr~R.,' 

c.- (2p)Y I r (y+iZe 2€/p) I cxp (r.Ze 2e:i2p) 2i1) - X- iZe2jp 
1 - Vr.pf(2y+ 1) 'e -- -f+iZe2F:jp ' 

Qit. = ei1) (1 + iZe2sjp)J 1 ([ + 1 + iZe2sjp; 2r + 1; 2ipR0 ); r = + ·r· 

3) Electron at negative level of continous spectrum(- 8): 

A B Ry-i-'l•s ( R )· it.= i 0 it. s 0 ' 
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at A=+% 

B: - {2p)Y I r (y- iZe2E/p) I exp (--rtZe2E/2p) 
I - Y -rtp 1'(2y + 1) ' 

2. MATRIX ELEMENT OF ELECTRIC 
MONOPOLE 

If retardation is neglected, the matrix element of 
the monopole assumes the form: 

z 
= e2 ~ ~ ~iut (~;)I r ~~·I ~1u!{~;) (d~;) (dr), 

i-1 I 

where t/12 and t/11 are the electron wave functions, 
while u2 and u1 are the functions of the nucleus in 
the final and initial states respectively. Simple cal­
culations yield for the matrix element of a transition 
of the type (1, j A) .... (2, jA): 

where Rn, is the nuclear matrix element. With an 
accuracy to quantities on the order of 0.03 and less, 

RjA equals: 

Rn .. = Ri 

I z (;: )2i+ll 
= [(2j + 1)(2j + 2)P <ut ~1 ;~- U1) 

(j + 1)-1 cu1cu 2 - cui- cu~ 
+ 4 (j + 1) (2j + 3) (2j + 4) 

The second term in Ri amounts to 0.1 of the first 
term even at Z = 90 and 8 "' 30. Hereinafter we 
shall denote 

3. PROBABILITIES OF EO TRANSITIONS 

Conversion of shell electron from state (n, j, A). 

W - 2-rte4 C2N2 IS· (1) S·· (2) [2 R4Y ~ 
- [(2j + 1) (2j + 2)]2 I 1n 1 J'). lA 1 o Pr 

In the case of the K, LI, and LII shells, the nuclear 
matrix elements are the same and the ratios of the 
corresponding values of W are independent of the 
properties of the nucleus: 

[2 (y + 1)JY+1 [(2 + 2y)'l• + 1] 
2 (2y + 1) 

W u V:r=t2y -1 \ SLI (1) Su 12) \2 
WLII = V2+2y+1 SLII(1)SLJJ<2) . 

The conversion of the LIII shell e'lectron is deter­
mined by the quantity (Ze2/N) 2 Y+lp 2 Y-lR~'Y and 
for y,...., 4 it is approximately 108 -1Ql 0 times 
smaller than the probability of the K-electron con­
version. Numerical estimates of the probability of 
the L and K-electron conversion are given in the 
end of the article. 

Paired Conversion of Monopole 

The probability of the EO conversion with pair 
production can be obtained by calculating the ma­
trix element of an EO transition with electron func­
tions 

\}! (r) = ~ ein(i-).-I)/2 
.-plvl .LJ 

jp.). 

X [Y7,~ (- PI)l:_v,~iP.'- (r,- E1) e-ioi'-<1>, 

~p.v. (r) = ~ ein(j-).-1)/2 

jp.). 
''- * -io · (2) X(Yjp.(p2)J-v.'fip.).(r,E2)e 1'- , 
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in the asymptotic approximation t/;p 2112 and t/;p 1111 

contain plane and converging spherical waves 

(normalization of t/Ju1- f.. by o (z- s')o l"fl'oli'oAA'). 
Considering that the contribution of waves with 

For Ca~~. zr:~. and Po~~4 the integral was evaluated 
numerically to be 49, 1.2, and 0.017 respectively. 
The function of the angular correlation N(e) of the 

j > ~ is negligibly small, and taking only j = ~ into 
account, we obtain for the pair-production probability 
and for the angular correlation of the positron with 

the electron: 

positron with the electron at fixed energy 8 1 ( 8 2) is 
determined by the square of the modulus of the 
elements: 

N (~) ~ ~\ ~ exp{i (oii. (2)- oiA (1 )) } [Y71"(P2)l-v. [YJ'fl (- PI)l~v,AiA(1 )A;,,.(2)/2 • 

v1v;a !J./.. 

From which we find: (j = ~) (>.. = ± ~) 

N (B)= ; ~ i SA (1) SA (2) 12 - [S+ (1) S_ (1) s_i- (2) S_ (2)] cos 91 cos Bp,pz· 
- A 

where the phase Cfl1 is determined with accuracy to 
terms in (pR0 ) 2 hr. the following equation 

As Z-> 0, the equations for the conversion probabil­
ity for the angular correlation become the known 
equations obtained in the Born approximations 9 • 

Inelastic Scattering of Electrons 

Unlike the preceding case, the matrix element is 

calculated with the following electron functions 

~Pzvz (r) 

= ~ eirr(i-1,-1)/2 [Y~ (p )]"' •li· (r~ ) -il5iA (2) . . Jfl 2 -Vz, /!-LA c2 e , 
]flJ. 

and t/;p 11 contains a plane wave and divergent 
1 1 

waves in its asymptotic form. Restricting ourselves 
again to terms with j = ~. we obtain for the scatter­
ing cross section and for the angular distribution 
(j = ~; >.. = ± ~): 

N (B)·= ~ ~ 1 sA (1) sA (2) J
2 + [S+ (1) s_ (1) s+ (2) s_ (2)1 cos 92 cos f!p,p •• 

A 

where Cfl2 is found with an accuracy to terms in 
(pR 0 ) 2 from 

By way of illustration let us show the calcula­
tions of the cross sections for several elements at 
electron energies 10 and 20 mc2 • We shall represent 
the cross section as 

a=(ao/4rr) (l+b cos e)pjl0-30 (cm2 /sterad). 
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The values of b and a0 are given in Table 1. 

TABLE I. 

Energy 10 mc2 1 Energy 20 mc2 

Nucleus 
"· I b I b* "• 

Ca~~ f 0.054 1 0.93 I 0.34 I 
Ge~~ I 1.08 I 0.97 I 3.2 I 1 

zr90 
40 I O.!l8 I 0.97 I 3.7 I 1 

Pd1os 
46 I 2.52 I 0.99 I 7,4 I 1 

Po~~4 I 67 I 0.98 I 190 I 1 

*At an energy E = 20 it is important that the phase 
shift due to the finite dimensions of the nucleus be 
taken into account. This was not done in this ·estimate. 

4. EFFECT OF FINITE NUCLEAR DIMENSIONS 

851 

It is interesting to determine to what extent results of calculations with the Coulomb functions of the 
point nucleus are charged by accounting for the finite dimensions of the nucleus. We obtain for the ratio 
of the probabilities, calculated for the point nucleus and finite nucleus: 

For the conversion, scattering, and pair production processes, F assumes the !ollowing form: for the 
(njA.) shell electron conversion 

for electron scattering (A.= ± Yz) 

] [(e1+1)'1•(e2+1)'1•Re Q iA (yi)Re Q iA (y2)+(e1-i)'l•(e2-1)'!•Im Q jA(yi)Im Q iA (y2)f2 

f=~A~--------------------------------------------------

for pair production 

] [SA (1) SA (2)]2 
A 

~ " 'I 'I '/ LJ J(e1 +1) 12(e2--1) 'Re PiA(y1) Im Q iA(y2)+(e1-1) •(e2+1) 2 Im PjA(yi)Re QjA(y2)l2 

F ==~A~---------------------------------------------------------
~[SA (1) SA (2)] 2 -A 
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The corrections for the finite size of the nucleus, 

calculated for the case of conversion, are given at 
the end of the article. The values of x for scatter­

ing and for E = 10 mc2 are: 

Nucleus: Ca~~ 
x: 0,98 

Ge~~ 
0,97 

5. TWO-QUANTUM NUCLEAR TRANSITION 

In the case of a 0-0 nuclear transition, radiation 
transition is possible only by emission of two or 
more photons simultaneously. The photon spectrum 
now becomes continuous. Similar two-quantam nu­
clear transitions were investigated earlier by 
Sachs 13 , Schwinger5 , and Goldberger 14 • It was as­
sumed in all these investigations that the nucleus 

emits quanta upon transition through one virtual 
state, the energy of which was chosen arbitrarily in 
the estimate. We shall give below a somewhat dif-

ferent estimate of the probability of a two-photon 

nucleus, taking into account a group of virtual 
states of the nucleus. 

In recent studies of photo-nuclear processes, a 
gigantic maximum of the "resonance" type was ob­
served in the cross sections of the (y n) and (y p) 
reactions at energies h Wres "'60 A-~ Mev. The 
presence of such a nuclear "resonance" can be 
considered as a result of a sharp increase in the 
density of the "dipole" levels of the nucleus in the 
region of the "resonance" energy (by "dipole" lev­
els we understand here levels reached by a nucleus, 
originally in the ground state, by absorption of a 
dipole quantum). It is natural to propose that in a 

nuclear transition with emission of two dipole quan­
ta the greatest contribution is due to the virtual 
transitions at the levels near the "dipole resonance" 
of the nucleus. 

Within the framework of these assumptions, we 
obtain for W y y and dlf' y y: 

fi y is the operator of interaction with the dipole quantum 

€ A is the quantum polarization vector, anci" k is the wave number of the quantum; 

The integral can be calculated, but the end result is quite cumbersome. Taking it into account that 

€ res-> 6., it is easy to obtain the upper and lower estimates of the integral: 

where 

1:::. 
a=-. 

e res 
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Thus 

The matrix element of the transition can be broken 
up into two parts: 

<2j ~ (§i~i/R~) II>= <21 ~ (~i/R0) 2 j 1) 
~/ t 

+ <21 ~- (§i§i/R~) /I>. 
<>J 

According to Levinger' s calculation 15 we obtain for 
the diagonal matrix elements of such an operator 

<21~_§i§ill>~-; (2~~~7/1). 
t>J l 

Assuming that this equation holds approximately 
also for the nondiagonal element, we obtain 

Wyy ~ e4 1 ~:07t (-ft--)2 R~S j <21. L (~dRoP II> /2 -
res i 

The function of the quantum angular correlation 
W(e) is identical with that obtained for two electric 
dipole quanta in the 0-> 1 ... 0 cascade and is of the 

form W(e) = l + cos 2 e, where e is the angle between 
the wave vectors of the quanta. 

6. RELATIVE CONTRIBUTION OF THE MI, 
E2, AND EO TRANSITIONS 

OF THE NUCLEUS 

In the case of a nuclear transition between states 
with equal spins and parities, it is possible to have 
a EO-transition along with £2 and Ml transitions. 
It would be interesting to compare the probabilities 
of the conversions of the shell electrons for various 
multipoles. We shall give below the calculated val­
ues of the ratios of the probabilities, WEO to WMl 

and to WE2 for K-electron conversion. 
To dete;mine the conversion probability in the 

E2 transition we shall consider only the contribu­
tion of the charge of the transition. Actually, at en­
ergies on the order of.{): Ze2 the contribution of the 
transition current is approximately (Ze2 ) 2 of the cor­
responding contribution of the transition charge. 
At greater transition energies k » Ze2 both terms 
are of the same order, but they have different signs 
(see Ref. 9). Thus, the estimate of the £2 transi­
tion made with the aid of the scalar potential differs 
in this case from the accurate value by a fact known 
not to exceed 4, a circumstance that can be allowed 
for in the estimate. Consequently 

W£2 =2;re4 2~65 ~ [IT1 + IIT 2 ] i (2/1 £2 !/1) /2 ; 

i2Az 

T1 = (2j2 + 1)'1' (2j2 - 2/,2 + 1)'12w (j2 ~ 2h -/,1; . ) . ) ci,-"A,o 
l2 - '211 iz-Az020 • 

T (2 . + 1)'1' (2" + 2' 1)'1' (· 1 2" ' 2 = l2 12 ''2 + . w J2 2 h + /,1; 

00 00 

l= ~ gj,t.,(r)gj,t.,(r)F 2 (kr) r 2dr, II=~ f 1,~.,(r)fj,t.,(r)F2 (kr)r2dr, 
R, R, 

where F L (kr) is the Hankel spherical function. 
The integral of the Il£2 transition is always approximately proportional to (Ze2) 2 also for all Z less 

than l, and we can therefore disregard henceforth integral II in the estimate, without causing an error 
greater than 2. The reduced matrix element of the £2 transition is determined by the equation 

z 
<Dft,(2)~~ ~7Y4;rY2M(Oi~i) jnfM,(1)) = cli'I:zM(2![£2jl1). 

i=l 



854 D.P. GRECHUKHIN 

We can denote analogously 

z 
<nfht(2)~~ ~~~QfM(l)) = <21JEOJJ1), 

i=l 

where Q[M. (2) and Q;'M, ( 1) are the wave functions 
of the nucleus in the final and initial states respec­
tively. In the case of an £2 multi pole conversion 
on the K shell, two final states of the electron ar·e 
possible: 

(j = 3/2, /, = + 1/2, l = 2) 

and (j = 5/ 2 , A= - 1/ 2 , l = 2). 

To compare the probability of the £2 transition with 
the probability W EO of the monopole transition, we 

shall use the value of the probability for the first 
transition multiplied by lwo, thus overestimating the 
total probability of the £2 transition. For the M1 
transition (j1A1 1) -> (j1A12) we have 

4~ e4k4 (" lj 11· 1" )]2 W M1 = " --9 [w h 2 , h 

X (I+ II)ZJ <211M 1 jj 1) 1
2 , 

where the reduced matrix element is determined 
analogously: 

\. I "v-- {( [L. 2 a <D <~ .) ) v- 1 <Q!,i1, (2) f 4or zit+ ~i P 3 ' 2 (ai YU.,1) 

+ -1T (Ii Y~"k)} I n;\M, (1)> = cl1J~1M < 211 Ml Ill>. 

for the M1 transition: 

The operator y2(e /3)[u;Y-tM (8; cp;)] takes into 
account the effect of the spin-orbital proton inter­
action in the M1 radiation, and this term plays an 
important role in the transitions of the type 
~ + .... ~ +; op = 1 for the proton and op = 0 for the 
neutron, while Jl i is the algebraic magnetic moment 
of the nucleon in the Bohr magneton, M is the nu­
cleon mass (2 x 103 ), and u are the Pauli matrices. 

co 

I= ~ fj,t., (2) gj,t., (1) F 1 (kr) r 2 dr, 
R, 
00 

II = \ g., (2) f., ( 1) F dkr) r 2 dr. 
~ }tl\1 }tAl 

R, 

The integrals I and II of the conversion transi­

tions can be readily estimated for two limiting val­
ues of the transition energy (~ = k): k < Ze2 and 
k >-> Ze2 • 

If k ~ Ze2 , we employ the Bessel-function expan­
sion 

F L (kr) = - i (2L )! (kr) -L-l 
2L L! ' 

and if k >> Ze 2 we carry out the calculation in the 
Born approximation. As a result we obtain for 

k ~ Ze2 : 

for the £2 transition: 

I~- 3ik-3 (~:: 2 + 1)'1• (e1 + 1/1' Nj, (1) 

X ci. (2) Rci'+y.-S Re <I> ("'f2), 

I~- ik-2 (~::2- 1 )'1• (s1 + 1 )'I. N i,(l) Ci, (2) R~ (y,-1) lm <l> (12), 

II~ik-2 (s 2 + 1)'1'(1-s1)' 1'Ni,(l)Ci, (2)R~(y,-l)Re<l>(j2), 

where 

We shall assume furthermore that 
Re <I> (y2) "" lm <I> (h) "" 1/ Ze2 • If k » Ze 2 we can 
neglect the integrals II, since they are approxima-

tely proportional to (Ze2) 2 I. We obtain in this case 
for £2 and M1: 
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Using the values obtained for the integrals I and II, we obtain for the ratios of the E2 and Ml probabilities 
to the EO transition probability: 

Fork~ Ze2 

Fork» Ze 2 

w Eo> 22y,+l R6 (y,-Il (p~- k2)2 p~Y,-6 exp ('ITze2 ·~) 
WF2 P2 

\ r (Yl + iZe2 Ez I P2) 12 I SA (1) SA (2)1 2 I (2[1 EO Ill> 12 

X f(2y1 -l-1) -(si-\-1)(sz-i-1) <21iE2111) 

Taking it into account that the two last factors are 
approximately equal to unity, we obtain in accord­
ance with the above estimate for p < Ze2 

W Eo I W E2 :;?;:. 144[ ( 2[[ EO [[1) I < 2 [[ £2[[1) i 2 • 

At low energies this ratio depends little on Z and 
is close to unity, even if we assume a value of ap­
proximately 0.1 for the ratio of the matrix elements. 

If the transition energy is higher, L1 rv l, the ratio 
WEoiWE2 depends greatly on the value of the nuclear 
charge. At small values of Z we have WE2 ""WEo, 
and at large values of Z (Z > 60) we have 
lfeo » WE2• if the reduced matrix elements are equal. 

Analogously, we obtain the ratio of WE o/W Ml for 
the same limiting cases. (The transition ( j = ~; 

A=-~) -> ( j = 34; A= ~) is taken into account by 
the factor 2.) 

W Fo 4 [S)Jl) SA (2)]2 j <211 EO [[1) 12 

wj\;~ > [(Ez- 1)'/, (sl + 1)'/, Im <1) (yz)- (1- si)'Iz (1 + z:2}' 1' Re <D (:zlF I <211 M1[11> 

and for k » Ze2 

W Eo~ 22y,-1 [SA (1) SA (2)]2 [p~- k2]2 R~ (y,-1) exp (~zezc:zf Pz) I l' (':'1 + iZe2c:zf Pz)[2 

w.'Hl :7 (t:l + 1) (Ez -1) Pt-2y, [I' (2~·1 + i)F 

I. <211 EO Ill> '2 

X (2/!Mlill>l· 

In this case the ratio W Eo/W Ml is also a rapidly­
growing function of Z. If Z .:b 50, its approximate 
value is l0-2 • The estimates cited show that in the 
transition-energy region k .>;:; Ze2 one can except a 
considerable inclusion of electric monopole in the 

K electron conversion in the case of nuclear transi­
tions of the type I±-> I±. In the transition-energy 
region k » Ze2 , the contribution of the monopole 
may be substantial only for sufficiently large values 
of Z (Z > 50). 
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7. ESTIMATE OF THE NUCLEAR TRANSITION 

MATRIX ELEMENT 

The monopole nuclear matrix element, like that of 
other multipoles, can be estimated at the present 
time only within the framework of definite model re­
presentations. We shall give below the results of 
the estimate of the EO matrix element both for the 
single-particle model, as well as for several models 
with collective motion of the nucleons. The esti­
mates of the monopole matrix element are also gh•en 
by Schi££ 16 . 

l) Single-Particle Model 

In the limiting case, when the change in the 
state of the nucleus occurs by a transition of one 
particle from state .Q~M (l) into the state .Q~M (2), 
the matrix element <2\'i~l\l >reduces to the 
single-particle matrix element: 

z 
<21 ~ ~f II>= (A~-+ Op) (.Q[~ (2) [ ~2 i .Q~M (I)). 

z~1 

The core, the field of which contains the "external" 
nucleon, is assumed invariant. The term proportion­
al to Z/ A2 results from the allowance for the effect 
of the recoil of the core, while op = l for the proton 
transition and oP = 0 for the neutron transition. As 
a rough estimate 

2) Hydrodynamic Polarization Oscillations of 
the Nucleus 

The monopole nuclear matrix element can also be 
estimated by representing the nucleus as a drop of a 
charged two-component nuclear liquid. Such a drop 
may be subject not only to radially-symmetrical pul­
sating surface oscillations but also to polarization 
oscillations of the proton and neutron components 
of the liquid. The frequency of these oscillations is 
considerably smaller than the frequency of the oscil­
lations connected with the compressibility of the 
nucleus. 

Comparing the classical and quantum-theoretical 
polarizabilities of a drop acted upon by a small per­
turbation v = A r 2 ei Wt' we obtain an integral sin:. 
gular equation for the square of the modulus of the 

matrix element. The solution of this equation leads 
to the estimate: 

z 2 

I<'21~~7II>I g(Ll)= 
i 

{ 
5 5 ~2- E~ 

X I - 3 Im F (x) + 3 r~ ReF (x)} , 

F (x) = [(6- X2) (x cos x- sin x) + 2x2 sin x) 
x2 (xcos x- sin x) 

r ~2 _ r~ 
X= (k0 R0 ) V ----I + l-

E~ E~ 

I [ E2 fe: ]-'/, I 
(koRo) ~2.os ~r -I- i ;t . 

Here N is the number of neutrons in the nucleus, 
A = N + Z, M the nucleon mass, r and Eres the 
width and "resonance" energy of the known dipole 
"resonance" appearing in (yn) and (yp) reactions, 
and g(Ll) the density of the nuclear levels that 
can be excited by the EO transition of the nucleus 
at an energy Ll. The above estimate is correct for 
transition energies at which the spectrum of the nu­
cleus becomes continuous. 

3) Surface Quadrupole Oscillations 
of the Nucleus 

Even-even nuclei with A ranging from 76 to 152 
have apparently an energy spectrum corresponding 
to a hydrodynamic phonon nuclear excitation of the 
quadrupole type. This was first pointed out by 
Scharf-Goldhaber and Weneser 17 . However, another 
interpretation of the spectrum of these nuclei is 
possible. The problem can be solved by investiga­
ting the ratios of the photon-emission probabilities 
to the electron conversion probability for various 
nuclear transitions. Electric monopole transitions 
make possible still another clarification of the char­
acter of excitation of this group of nuclei. It would 
therefore be interesting, within the framework of 
this model, to estimate the matrix element of the 
EO transition and to compare it with the matrix ele­
ment of the E2 transition. We shall next describe 
the state of the nucleus by the following quantum 
numbers: v- number of phonons, /, Jl- spin and spin 
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projection on the OZ axis. The wave function of 
the nucleus is xtll-. Depending on the number of the 
phonons, the spin of the even-even nucleus can as­
sume the following values v = 0, I = 0; v = 1, I = 2; 
v = 2, I = 0, 2, and 4. Experimentally OI]e observes 
the following sequence in the values ~f the nuclear 
spin in the fundamental, first, and second excited 
states 

[I = 0, I = 2, I = 0); 

[I= 0, I= 2, I= 2] ;and [l = 0, I= 2, I= 4]. 

In the case of the spectrum of the first and second 
types, EO transitions with electron conversion can 
occur between the second and ground state and be­
tween the first and second states of the nucleus 
respectively. A simple calculation, under the as­
sumption that these states are phonon excitations 
of the nucleus, yields the following values of t~e 
matrix elements of the E2 and EO transitions (E2 
and EO operators of the E2 and EO multipoles): 

< o+ I EO I 2 ) - ~ ZR2 v 2 ( 7iCil ) Xoo I Xoo - 47t 0 5 \ 2c2 ' 

V- 'I 

<x~: I £o I x~p.> = -4: ZR~ 6 };t- c~~2o G:-) ', 
o+ I (E2) I , > - 3 ZR2 (7iCil )''· ( l )M, v47t <Xoo M , X2p. - -4;t o ,2cz- - op.-M 5 , 

<z~ti(£2)MIX~p.) = 4: ZR~ lf8C~~zoG:)ep.-Al (-1)M 

< 1+ 'I (E2) I' 2 > - 3 ZR2 2 (11-Cil)'/,' V2-X2p. M X00 - 7;;t o - 5- 2c;- 0 p.M ", 

We obtain for the ratio of the matrix elements of the 
competing transitions: 

A '"'-

<x0+ II EO II X2 >I <x1+ 11 E2ll x 2 > ~ o 1 00 . 00 2p., 00 -~ . , 

It is assumed in the estimate that (1iw/2c2)y, ""0.18 
(see, for example, Refs. 18 and 19). For the matrix 
elements of the EO transitions of two nuclei with 
different spectra we have 

We obtain a numerical estimate of the order of mag­
nitude of the matrix elements by putting 
(1iw/2c2)y, ""0.18; then 

A 

<x l+ I EO I X2 > ~ 2. ro-a ZR2 
"2P. 2!'- .~ O· 

8. CERTAIN RESULTS OF THE CALCULATIONS 

By way of illustration let us give the calculated 
probabilities of the shell-electron conversion, pair 
conversion and yy transition for the nuclei Cai~, 

Ge;~, Zr:~. Pd~~\ and Po~!4 • 
Table 2 gives the values of the probabilities, 

divided by 

1<21] (~i/ Ro)2 11 )l2 andl <2 i ] (~i~i I R~)\ 1)12 

i. j 
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for the yy transition. 

TABLE II. 

Nucleus\ ,~;2 

Ca~~ 6.7 1. 5-10° "-'4·107 5, 05 ·108 7.8 :~42 0.99 0.965 0.97 
on 

e32 1.4 .1.5· f04 0 2,56-108 7.4 198 0.96 0.83 0.94.1 

Zr~~ 3.5 5. 7-106 "-'1.4-106 f, 16 ·101° 7.6 102 0.87 0.88 0.88 
Pdlll6 

46 2.27 3.3·106 - 3,54-1010 6.9 71 0.88 0.87 0.87 

Po2~t 2.85 5.6-107 • "-'8. 7 ·106 8,45-1012 5.3 19.6 0.68 I 0.77 0.75 

All the values of the probabilities are given in the 
usual units, sec -1 • 

Data concerning EO transitions of even-nuclei with 

A ranging between 60 and 160 are of particular in­
terest. A study of the EO transitions for this range 
of A between levels of nuclei with spin I: 0 +-> 0 + 
and 2+-> 2+ would make it possible to establish the 

character of the excited states of the nuclei. 

Note added in proof (April 27, 1957): After this 
article went to press, we became acquainted with 
the work by Church and Weneser (E. Church, J. 
Weneser, Phys. Rev. 103, 1035 (1956)] which deals 
with the conversion of the shell electron in the EO 
nuclear transition. They used numericfJ.l methods 
and took the screening effect into account. Since 
the calculated data are given in graphic form, di­
rect comparison of the results is difficult. However, 
qualitative deductions and the values obtained in 
our work published for many nuclei are in good 
agreement with the values cited by Church and 
Weneser. 
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