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makes a transition from the ground state with y = 0 
to the S state which corresponds to y = TT the quad­
rupole moment is changed in sign and magnitude. 

In nuclei where the states of the outer nucleons 
correspond to negative values of {30 the lowest ener­
gy levels occur for y = TT. However it appears from 
experiment that there are no nuclei with large neg­
ative values of {30 • 

The author is deeply indebted to Academician I. 
E. Tamm for his interest and for valuable comments. 

1 A. Bohr, Kg!. Danske Videnskab. Selskab, Mat.-fys. 
Medd. 26, 14 ( 1952). 

2 N. N. Lebedev, Special Functions and their Applica­

tions, GITTL, 1953. 
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AT PRESENT THERE IS EVIDENCE that at 
Berkeley 1 in a bubble chamber, filled with liq­

uid hydrogen having a varying deuterium content, 
there could be observed a nuclear reaction catalyzed 
by p.-mesons. The possibility of such a type of re­
action was first pointed out by Frank 2 in connection 
with the analysis of rr-p. disintegrations in emul­
sions. This process was investigated in liquid deu­
terium by both of the authors of this article, inde­
pendently of one another 3 •4 • 

The presence of a p.-meson changes the form of 
the potential barrier which previously prevented nu­
clear 'reactions among slow proton and deuteron nu­
clei, increasing sharply the penetrability of the 
barrier and making possible the reactions 

p + D =Hes, D + D = He3 + n, D + D = T + p. 

In the presence of tritium there are also possible the 
reactions 

D+T=I-Ie4+n, T+T=He4+2n, p+T=He4 • 

The reaction p + p = D + e+ + v, catalyzed by 
mesons, is practically impossible, since in addition 

to the barrier there is also the factor of a low proba­
bility for the beta process. 

It has been predicted4 that the probability of the 
reaction in flight is low, the production of mesomol­
ecules practically always leads to nuclear reac­
tions, the rate of the process is determined by the 
production of mesomolecules, and the probability of 
mesomolecule formation during the lifetime of a 
meson may amount to several hundredths or even 
tenths, depending on the arrangement of the mesomol­
ecule levels. 

The experimental data of Alvarez 1 shows that in 
natural hydrogen (deuterium content ratio 1 : 7000), 
the reaction p + d = He 3 occurs on the average once 
for each 150 mesons. If the deuterium ratio is 
1 : 300, the reaction occurs once per 40 mesons, 
and if the ratio is 1 : 20, the reaction occurs once 
per 33 mesons. Furthermore, the energy of the re­
sulting He3 (5.4 Mev) is carried away by the p.-meson, 

so that monochromatic p.-mesons are observed while 
the reaction is taking place. The relatively high 
probability found for the reaction in the natural mix­
ture is explained,1 by the transfer of the meson from 
the proton to the deuteron (charge exchange): 
pp. + d = p + dJL. Due to the difference in reduced 
mass, the energy of the DJL bond (2655 ev) is greater 
by /).£ = 135 ev than the energy of the pp. bond. 
Therefore the charge-exchange process appears to 
be irreversible under the experimental conditions. 

We shall give a rough estimate of the probability 
of the transition. If/).£ is equal to zero, the cross 
section should he of the order of TT d-, where a is 
the radius of the Bohr orbit of the mesoatom, 
2.5 x 10-11 em. 

Indeed, if the masses of the two nuclei are equal, 

with /).£ = 0, the states of the systems Lg and 2v 
+ -

appear to be proper, and the cross section for charge 
exchange can be expressed by the scattering lengths 
ag and au of these states in a continuous spectrum: 
a= rr(ag- au)2• When/).£=/: 0, but is still small 
with respect to the molecular dissociation energy, 
then 

a= rr(ag- au)2 vr/vi, 

where vi is the velocity before collil;lion and Vf is 
the velocity after collision. 

In actual fact, /). E is of the same order as the 
dissociation energy, so that the formula is corrected 
at least in order of magnitude. If vi is small a rv 1/v 
a rv l/vi. It follows that in order of magnitude, 
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where v* is the characteristic velocity correspond­
ing to 135 ev. Using the masses of the proton and 
deuteron, v* = 2 x 107 em/ sec. Such an estimate 
yields qualitative agreement with the observed facts. 
Calculation shows that saturation should he reached 
at deuterium concentrations of 1 in 300 to 1 in 20. 
In the natural mixture of hydrogen, the probability 
of D11 production and consequently the probability 
of the reaction should he three-fold less than in en­
riched mixtures; experimentally it is found to he 4 
to 5 times less. 

Let us examine the reaction in the pDfl molecule. 
The observed high probability a of the giving up of 
the meson energy does not agree with the hypothe­
sis that the reaction proceeds like an electric di­
pole transition (El), since a becomes 2 x 10"3 for 
the meson under this hypothesis. Therefore, to esti­
mate the probability we cannot use the experimental 
cross section for p + D = He3 + y (as was done he­
fore4), since under the conditions of the measure­
ment, it is precisely the cross section of theE 1 
process which is observed. 

In the case of zero orbital momentum, the system 
p + D can he found in either of the states + 3~ or 
+ %;. The transition to He3 (+ %1 state) is possible 
in the first case as M 1 and E 2, and in the second 
case as M 1 and EO*. 

The conversion coefficients have the following 
values: forM 1, a= 10"4 ; for E 2, a= 0.1; forE 0, 
only the giving up of meson energy is possible 
(the probability of pair production e + and e· at the 
expense of E 0 is 10"3 of the probability of the 
giving up of meson energy in the case of p + D, hut 
is of the order of unity in the case of p + H3 = Ile4 ). 

Calculations concerning harrier penetration for 
the pDfl molecule under adiabatic investigation of 
the motion of the proton and deuteron yield 
t/J 2 (0) = 6 x 10"27 cm"3 • 

For the mirror reaction n + D, it is assumed that 
for the purposes of computation8 the process pro­
ceeds from the state % as the result of Ml. Exper-

1 h al 9 5 7 10"28 imental y for t. errn neutrons , a = • x 
with v = 2200 m/ sec and av = 1.3 x 10-22 cm3 / sec. 

Hence for mesomolecules the probability of the 
reaction (1: = 2.15 x 10"6 being the meson lifetime) 
lS 

cr vtjJ 2 (0) 
w = (1/'r) + cr v \ji2 (0) = 0,6. 

*Church and Wenezer 7 have recently drawn attention to 
the role of E 0 in the case of internal conversion in the 

transition ] -+ ] f. 0. 

During the approach of the proton and deuteron 
in the spin state %1, the approximate determination 
of the magnitude of the monopole moment was car­
ried out by examining one charged particle with the 

wave function tjJ = ,r1 __ . _!_ e-rJ"A in the final (com-
r 2rr). r 

hined) state and tj; = tj;(O) (1- >../r) in the initial 
state (continuous spectrum, tj; (0) being the previ­
ously calculated wave function under the harrier, 
t/J 2 (0) = 6 X 10"27). 

The probability of a process with a release of 
energy, to a meson in a p + D, in spin state %1, and 
with >.. = 2.4 x 10"13 em turned out to he equal to 
0.5*. 

Thus from the rough estimates made above, it fol­
lows that the probability observed by Alvarez for 
the process which involves release of energy to the 
meson and the probability of the process which in­
volves emission of a gamma quantum can both he 
close to unity during the meson lifetime. 

In a more accurate investigation, not only will it 
he necessary to take into account the fact that the 
processes is not adiabatic (thus involving terms of 
the order of the meson-nucleon mass ratio), hut it 
will also he necessary to make a separate investi­
gation of the nuclear reaction with different values 
of total molecular spin. 

Note added in proof (February 9, 1957). The prob­
abilities for mesomolecule production in the colli­
sions Df.L + p = Dpfl and Df.L + D = D2 f.L differ not only 
due to the different positions of the excited vibra­
tional levels of the molecules4 , hut also because in 
pDf.L the center of mass does not coincide with the 
charge center, and thus possesses a dipole moment 
(% ea). Therefore in the collision of slow Dw+ p 
there is possible the dipole transition (£1) in the 
molecule into the momentum state 1, with the giving 
up of energy to the electron. In the case of D11 + D, 
only the E 2 transition into momentum state 2 com­
petes with the E 0 transition investigated4. 

1L. W. Alvarez et al., Lithographed document, December 

1956. 
2 F. C. Frank, Nature 160, 525 (194 7). 
3 A. D. Sakharov, Report, Phys. lnst. Acad. Sci. 

U.S.S.R. (1948). 
4 Ia. B. Zel 'dovich. Dokl. Aka d. N auk SSSR 95, 454 

(1954). 

*Choosing>.. =11hj2ME, where M is the reduced mass 
of p and D, and E is the binding energy, 5.4 Mev. 
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5 G. M. Griffiths and I. B. Warren, Proc. Phys. Soc '68, 
781 ( 1955). 

6 D. H. Wilkinson, Phil. Mag. 43, 659 ( 1952). 
7 E. L. Church and Wenezer, Phys. Rev. 103, 1035 

(1956). 
8 N. Austern, Phys. Rey. 83, 672 (1951); 85, 147 (1952). 
9 Kaplan, Ringo and Wilzbach, Phys. Rev. 87, 785 

( 1952). 
w ( E. E. Salpeter, Phys. Rev. 88, 547 1952). 

Translated by D. A. Kellog 
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JN PREVIOUS WORKS 1" 3 the dispersion formulas 
of the quantum optics of metals were obtained 

both without taking account of electron damping and 
with taking it into account for the infrared, visible, 
and ultra-violet regions of the spectra. The present 
note is intended to indicate errors in the above 
works, as well as finally to give the correct disper­
sion formulas for 8 and a. • 

The many-electron wave function of the crystal 
used in the cited works was taken from Seitz4 and 
is of the form 

N 

\ji (r1 ... r,,, s) = Xk k .(r ... r,., s) exp (i"" k.r.), 
1 l·.. IV • .4J 1 1 

(1) 

where X is a periodic function with period a. It 
should be noted that the use of the wave function of 
E'q. (l) for a set of interacting electrons in a crystal 
is inconsistent, since it gives the total quasimomen­
tum of the system (a conserved quantity) as the sum 
of the quasimomenta of the separate electrons; this 
is true, strictly speaking, only for a system of non­
interacting electrons. 

As was pointed out by Volz and Haken5: 6 , if the· 
independent variables are chosen as the coordinates 
of the center of gravity of the system R (X, Y, Z) 
and the appropriate number of relative coordinates, 
the wave function of a system of interacting elec­
trons in the crystal may be written in the form 

where the three quantum numbers Kx, Ky, and Kz 
give total quasimomentum of the system and char­
acterize the motion of the center of mass R of the 
total electron system, and I is a continuous quantum 
number related to the relative motion of the elec­
trons, that is, to the relative coordinates 
rik = rj - rk, and characterizes changes in the con­
figuration of the electron systems; s denotes the 
number of the band together with the other discrete 
quantum numbers of the system. The function X is 
periodic with respect to translation of the center of 
mass of the system along the lattice vector a. 

The use of wave ful\-ctions such as those of Eq. 
(2) is more correct, since in this case the total qua­
simomentum K of the system of interacting electrons 
uniquely characterizes the system as a whole. 

If we calculate the matrix element for the proba­
bility of optical transition, using the wave function 
of Eq. (3), in the same way as previously 1, we ob­
tain the energy conservation law and interference 
condition for the whole system of interacting elec­
trons, namely 

E (K', /', s') = E (K, I, s) ± ttw, 

K' = K + Ko + 27tg, 
(3) 

where Ko is the wave vector of the electromagnetic 
wave, and g is the reciprocal lattice vector. For 
selection rules, see also Haken 7• 

In connection with this, we note that in the pre­
vious works 1" 3 , essentially single-electron selection 
rules g; = gi were used. In actuality, however, the 
set 8 of quantum numbers (K ', I') need not ne<:e s­
sarily be the same as the set (K, /), but must merely 
satisfy Eq. (3). The use of the correct wave func­
tions of Eq. (2) in the derivation of the dispers·ion 
formulas leads to the following expressions for 
8 and a: 

\ 


