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5.All the results enumerated above are independ
ent in their qualitative aspects of any special 
choice of the potential energy U. 

I take this opportunity to express my deep appre
ciation to K. B. Tolpygo who suggested and guided 
this work. 
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Using the macroscopic treatment of the polaron as the zeroth approximation, the periodic 
potential of a crystal and the periodic variation of its polarizability with variations in the 
position of the polaron center of gravity are calculated in the first approximation. We deter
mine the dependence of the energy of a crystal with a polaron on the position of the pola
ron's center of gravity, and it is found possible to treat polaron motion as the motion of a 
particle with the polaron mass M in a field with a periodic potential. We determine the 
widths and spacings of the lowest forbidden and allowed energy bands. A numerical calcu
lation is performed for NaCl, KCl, KBr, and KI. 

1. STATUS OF THE PROBLEM 

GREAT SUCCESSES in the theory of the electric 
conductivity of ionic crystals were attained as 

a result of Pekar's polaron theory 1 • 2 in which the 

interaction between electrons and polar vibrations 
of the crystal are introduced into the fundamental 
Hamiltonian of the problem. The periodic potential 
of the crystal is eliminated with the aid of the ef
fective-mass method 3 (EMM). It is found that elec

tron motion is composed of vibration within a polar

ization well and wave-like translation of the elec
tron together with the polarization well through the 
crystal 4 • For a fixed crystal polarization the elec
tron energy spectrum is found to be discrete. At the 
same time, the problem of electron and ion motion 
possesses translational degeneracy2 , so that the 
energy spectrum of the whole crystal is found to be 

continuous: 

where K and M are the wave vector and effective 
mass of the polaron5 , ][!jl] is the energy of the crys

tal with a stationary polaron, and (i.) is the limiting 
longitudinal optical crystal vibrations. 

The translational degeneracy of the problem of 
polaron motion led several authors6 • 7 to assert that 

the electron energy spectrum should have a band
like structure, and that therefore polaron theory is 
essentially band theory in which the interaction be
tween the electron and the crystal polarizations has 
been accounted for. This leads only to a formal 
change of the specific parameters of the current car
riers, and according to Tiablikov 7 is of no great con
sequence, since these parameters are usually ob
tained experimentally anyway. As was asserted by 
Tiablikov8 , Eq. (1) gives the energy only in the 
neighborhood of the lower edge of the first polaron 
band. 

In other works 9• 11 , Tiablikov suggested a method 
for calculating the electron energy spectrum by ac
counting for interactions with the phonon field sim-
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ilarly as is done in quantum electrodynamics. Ac
cording to his calculations, this spectrum consists 
of relatively narrow (102 ev) bands separated by 
relatively wide forbidden gaps. 

These calculations, however, cannot be consid
ered reliable, since the formulae of the last article 11 

are not carried to final form, and the first two arti
cles9• 10 contain several defects: 1) in spite of the 
fact that he is treating a polaron of small radius 
the author makes use of the macroscopic formula 
for the interaction only with longitudinal optical 
vibrations of the lattice, and neglects frequency 
dispersion; 2) Tiablikov' s 8 Eq. (13 '), which de
scribe~? electron vibrations and involves the poten
tial Vo(r) of a single ion rather than the periodic 
potential, gi'ves an electron-state radius less than 
the dimensions of the ion, and a level lying at a 
depth of the order of the ionization potential of the 
hydrogen atom; in this one may not ignore the ortho
gonality of this wave function to the internal elec
tron functions of the ion; 3) according to Tiablikov8, 

electron motion reduces to skipping from atom to 
atom, and the crystal polarization occurs each time 
after the electron "jumps." Thus the polarization 

potential is actually periodic and the total polariza
tion is non-inertial, so that the author is in fact sim
ply considering a band electron with a different ef
fective mass. Thus the conclusion on the existence 
of polaron bands is contained in the original as
sumptions of Tiablikov's work, and according to the 
above, the numerical calculations may give results 
which differ significantly from actual values. 

Furthermore, it is impossible to agree with Vol'
kenshtein and Tiablikov when they state that Pekar 
obtained a continuous polaron spectrum as a result 
of an inconsistent treatment of translational degen
eracy [the wave function of the polaron is not of the 

form eiKruJ6r)] and the application of theEMM. 
As has been shown by Pekar2, the Hamiltonian of 

an electron in an inertially polarizable crystal is 
invariant with respect to simultaneous translation of 
the electron and polarization of the crystal along an 
arbitrary vector ~. The wave function of the pola
ron is not an eigenfunction of the translation opera
tor, but is a linear combination of such eigenfunc
tions belonging to the same energy level. It is 
therefore an eigenfunction of the energy operator. 
By a special choice oJ variables one may easily 
obtain an eigenfunction of the translation operator 
which has the same characteristics as Pekar's func-

tion. In this case, however, the mass and mobility 
of' the polaron will be exactly the same as that giv
en by Pekar. Elsewhere 12 Pekar has shown by sev
eral examples that the fact of translational symme
try alone does not lead to a band spectrum. 

As for the use of the EMM, it is well known that 

its accuracy increases when rp » a, where rp is the 
polarization radius of the polaron, and a is the sep
aration between closest ions. As has been shown 
by one of the present authors 13 , when rp is of the 
order of several times a, the error in the EMM is in
significant, so that in dealing with a polaron of 
energy spectrum is by no means only of academic 
interest, and it is far from sufficient to answer it 
affirmatively "in principle" and leave the determin
ation of the specific current carrier parameters to 
the experimentalists. For certain definite relations 
between the forbidden and allowed bandwidths and 
the magnitude of kT, qualitatively new effects may 
take place. If a suitable quantitative theory were 
to predict such relations, it could provide direction 
also for experimental work. 

The present work, to our knowledge, is the first 
attempt to perform a quantitative calculation of the 
lowest poLaron bands. 

2, METHOD OF APPROXIMATION 

In view of the great complexity of the general 
problem, we consider relatively slow motion of the 
polaron, when we can neglect energy transfer to the 
crystal 14 • In addition, we assume that the polaron 
radius is large enough (rp » a) for the results of 
Pekar's macroscopic theory2 to be treated as the 
zeroth approximation. The consideration of even a 
stationary polaron of small radius is an independent 
and quite difficult problem. 

The reason that the polaron spectrum is continu
ous in Pekar's theory lies in the fact that the energy 
/[¢]of the crystal with an electron is independent 
of the coordinate e of the polaron center of gravity. 
As a result, the equation for the translational motion 
of the polaron 2 

- (1i 2 /2M) vpy + J [~] \f" = E\f" (2) 

has plane-wave solutions t/J = eiKE with energy given 
by Eq. (l). 

Strictly speaking, the functional/[t/1] which deter
mines the electron energy in the first stage of the 
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adiabatic approximation for the equilibrium posi
tions of the ions should depend on the coordinate e 
of the polaron center of gravity: J[tfr] = J(e). 

The quantity](~ has the periodicity of the lat
tice, and therefore Eq. (2) has solutions in the form 
of the Bloch function 

q> = eiK~ uK (£); E = E (K). (3) 

Our problem reduces to finding an explicit expres
sion for J(e) and integration of Eq. (2). This ex
pression depends on the discrete crystal structure, 
which must therefore be borne in mind. In calcula
ting the energy in the first approximation, we may 
use the wave function of the zeroth approximation 
which is obtained with the aid of the EEM, in which 
the crystal is treated as a continuum. 

Let the Schroedinger equation for the polaron 

[-(1i.2 /2m)L1+ Vp(r) 

+ W (r)] ~ (r) = E~ (r) 
have the zeroth approximation solution 

(4) 

q> = ~ aK i>K (r) = ~aK eiKruK (r), (5) 
K K 

where 1/Jx:(r) are Bloch functions, aK are the Fourier 
coefficients of the function ¢(r) which satisfies the 
equation 

[- (1i.2 I 2 [1-) L1 + W] tp = Ecp, 

tp = V-'1• ~aKeiKr, 
K 

(6) 

(7) 

fl. is the effective mass of the electron in the con
duction band 3, V is the volume of the fundamental 
region of the crystal, and W(r) is the polarization 
potential calculated in the macroscopic theory 1 us
ing the • smoothed out" functions ¢(r) of Eq. (7): 

W W ( ) _ _ 2 \ div P (r') d-r:' 
~ r - e ~ I r- r' I (8) 

_ _ 2 \ I q> (r') 12 d-r' · 
- e C J I r - r' I . 

In the first approximation we obtain the energy 
by multiplying Eq. (4) by t/J*(r) and integrating over 
v, 

(9) 

where E(K) is the energy of a band electron in the 

state 1/Jx:. 
Let ¢0f...r) be the smoothed out function for a pola

ron at rest at the origin, and a~ be its expansion 
coefficients. Then the sol uti on of Eq. (6) for a po
laron whose center is at e will be, taking account 
of Eq. (R), 

( 10) 

The first term of Eq. (9) is independent of e, and 
the e-dependence of the second term is lost in the 
macroscopic theory (without any significant error in 
the absolute magnitude of the energy 13• 15 , since 

when calculating the integral 

the rapidly oscillating factor u't,ux: was taken out
side the integral sign and its average value, about 
equal to unity, was used, and W was replaced by W 
of Eq. (8). 

We shall calculate E from Eq. (9) using the de

tailed polaron function tfrx:(r) given by Eq. (5) in
stead of the smoothed out function, and shall ac
count for the discrete structure of the crystal in 
finding the mean polarization energy W. To do this 
one must specify the form of the Bloch functions 
tfrx:(r). For reasons given elsewhere 13 , we shall 
make use of the approximation of strongly bound 
electrons and assume that for energies that are not 
very large 'the electron moves only on positive ions 
of the lattice: 

t\>K (r) = N-'1• ~ t\>a (r- ri) exp (iKri), (11) 
l 

where 1/Ja is the atomic function of a valence elec
tron on the positive site rf ,. l is the number of the 
cell, and N is the number of cells in the fundamen-
tal region. ,... 

We shall write TTl = pl + pl for the inertial dipole 
s s s 

arising at site r~ under the action of the polaron 
field, and due both to the displacement p: of the 
ions, and to the deformation P: of these ionsf6• 17; 

J (r 1 r') 
D (r!} = s- I •JJ (r') 12 d-r:' 

I r;- r' l3 ' 

shall be used to denote the induction at the site 
rl due to the polaron. Then the mean potential en

s 
ergy of the electron is 
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(12) 

where rrs'X. and Ds'X. are the Fourier expansion coef
ficients of rrl and D(r1 ), 

s s 

Detailed analysis of the natural vibration spectra 
of binary crystals 16 • 17 shows that all natural vibra
tions have some dipole moment, hut that for a large
radius polaron, interacting primarily with the longi
tudinal optical mode, the fundamental contributions 
to fl_.x come from this mode. As has been shown 
elsewhere 17 , in the zeroth approximation (long 
waves) each normal vibration of this mode has a 
dipole moment given by 

n~~ = ( l( I I x I) ( 1 I !1-s + Cs I ao) 

(see Tolpygo's 17 Equation (21) and Table II, where 
the values of the parameters p.8 c5 and a0 are given). 
The magnitude of the dipole moment rr s'X. due to the 
field Ds'X. can be found by considering the equa
tions for the normal coordinate q 1 introduced by 
the equation rr = ,<.!>q : 'X. 

s'X. s'X. 1'X. 

where e 8 is the charge of the s-th ion, and p. is the 
reduced mass of a pair of ions. 

The generalized force 14 • 18 Q1'X. is ] Dsxn~~x· 
s 

Thus, in a quasi-stationary external field 

(15) 

According to Eq. (12) the mean potential energy, 
of the electron will he 

where q, q ', p, p ', p ", and m are reciprocal lattice 
vectors, and the summation is taken over all indices. 

Eq. (20) can be simplified: a) the EMM assumes 

and the potential energy of the deformed crystal18 

will he 

In agreement with the long-wave Tproximation, 
we shall neglect dispersion and set Ci.l 1'X. = Ci.l. Then 
from Eq. (9), ( 16), and (17) the energy of a crystal 
with a polaron is 

1 [~]=~I aK /2 E (I()+ W + U0 
K 

2 (18) 
I 12£(1() N ~ es (1) (1) D D = ~ aK - 2w2 ~ - 1tsx 1ts'-x s-x s'x • 

xss' fl. 
K 

3. THE DEP _,mENCE OF THE ENERGY OF 
A CRYSTAL WITH A POLARON ON THE 

POSITION OF THE CENTER OF GRAVITY 
OF THE POLARON 

In order to find the components D s'X. of the induc

tion, let us find the mean potential v(r) of the 
o/-shell from the equation 

Llv = - 47te r ~ /2 (19) 

with the t/1 given by Eq. (5) and (ll). Expanding 
the atomic functions t/1 a in a Fourier series 

we solve Eq. (19), after which we calculate 
D(r) = -\7v(r) and find its Fourier coefficients. When 
these calculations are performed, we obtain the fol
lowing expression for /[t/J] of Eq. (18). 

(20) 

that the a~ decrease rapidly with increasing K and 
only terms..with I K I« 1/a are significant in Eq. (5), 
and h) the coefficients t/1 x: + q de crease rapidly 
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with increasing q (in the examples below the de
creases are as l/q4 and l/q6 and terms with q = 0 
are the important ones. Therefore the main contri
bution to the sum in Eq. (20) is given by terms in 
which the indices of a~: and tPK +q are simultane
ously small, that is those terms for which 
q = p = p 1 = q 1 = 0. Of these, the largest will be 
those in Wiich the product of the a coefficients is 
not too small. Since the main contribution comes 
from terms with small K, K 1 and the vector X. is re
stricted by the limits of the first cell of the recipro
cal lattice so that I x.l < 1/21 p 11 I, this product will 
be largest when p 11 = 0 or p 11 = m. If K is replaced 
by K 1 and x. by - x.these two terms transform into 
each other. The next largest terms will be those in 
which one of the indices of the tPK differs from the 
index of a~: by the smallest vector of the reciprocal 
lattice (t/Jx. decreases with Kless rapidly than does 
a~:). This gives eight types of terms, and these can 
be transformed to four types by replacing K by K 1, 

x. by-x.:, p by q, and p 1 by q 1: 

1) q =!= 0, p" = 0; 2) q =!= 0, p" = m; 

3) q' ~ 0, p" = 0; 4) q' =!= 0, p" = m 

(other q and p vectors are equal to 0.) 
Further calculations have been performed for a 

lattice of the NaCl type, where 

r 1 = 0, r 2 = a (I + j + k); 

qmin = (7t I a)(± i ± j ± k); 

the sum overs, s 1 gives the factor ~i~·- ~~~·, 

in the principal term, the factoc <~i~ + ~W)2 in 

terms l) and 3), and the factor (~l~- ~~1J)2 in 
terms 2) and 4). 

4, POLARON BAND WIDTHS FOR 

SPECIFIC CRYSTALS 

Let us take the smoothed out function ¢(r) to be 
of the form 

(21) 

and consider NaCl, KCl, KBr, KI crystals, for which 
the parameters of polaron theory are known. The 3s 
atomic functions of Na and the 4s functions of K 
have been approximated from the data of Fock and 

Petrash en' 19 and HartreeiD by one of the authors 15 

and by Dykman 21 : 

Na: Ya = -~~}~,:=- (1- r I ab) exp (- 0,712 r I ab); 
V 4na~ 

0,727 ~ 2,31-3,42 K2at 
~K =- V · [0,504 + K 2at ]9 ; 

(22) 
0 472 

K : 'ta = ~ '- . _ ( 1 ,62- r I ab) exp ( -0,569 rIa b); 
V 4na·}, 

'1K = 
o,944V~ 

v 
1,922 K2at -0,674 

[0,324 + K2at I' . 

We may go over, in Eq. (20), from the sum over K, 
K ', x. to an integral which can be calculated approx
imately by finding the maximum of the product of 
the four ex.~: coefficients and setting the indices K 
in the more smoothly varying factors tPK equal to 
their values at the maximum (for large-radius pola
rons this maximum is sufficiently sharp}: 
K = -(m/4) + KI; K = -(m/4) + K2 ; 

x. = ± [(m/2) - ~], and cos (IDK) > 0, since 
lx.l~ lm/21. In the principal term and in 2) and 4) 
we must take the minus sign, and in l) and 3), the 
plus sign for x.. Replacing q' by- q and accounting 
for the dependence of t/11: only on I K I [see Eq. (22)], 
terms I) and 3) are joined into a single term, as are 
terms 2) and 4). As a result, we get the ~-depend
ence of /[t/J] in Eq. (20) in the form 

(23) 

X K~ -m2
/ 4 + 2 "'dq-m/4 [<~(1 ) + (1)) 2 (q- (m/2)- Kol [(m/2)- Ko] 

(K~ + m2/4) 2 - (K0m)2 f <Jim 14 1" ~2>< (q- (m/2)-KoF.[(m/2)- K0 ] 2 

+ (~<1)- ~(1) )2 (q- (m/2) + Kol [(m/2) + KolJ1 dK dK dK . Q211 = f1.c~-a w2. 
1>< 2>< [q -(m/2)+ KoJ2 [(m;2)+ KoJ2 J 1 2 o• 



718 M. SH. GITERMAN AND K. B. TOLPYGO 

The integration over dK1 and dl~, as well as that 
over the angles of the vector K0 is now performed 

directly. The terms with 1ti~' + 1tW' in the sum 
over q may be joined by pairs and the integration 
over K0 can be taken over all space. The integral 
over !Ko I in the principal term and in the next lar
gest ones with q = m has been calculated by Simp
son's method. Finally, in the terms with q I= m the 

quantity K0 is neglected compared with m/2 and 
q- m/2, as a result of which the results obtained 
by calculation are somewhat too large for these 
terms. 

h . d f (l) (1) d r-.2 T e magn1tu es o a., a, 1t1,<, 1t2x , an ~~ 11 are 
taken from previous works 2• 16• 17• The results of 
the calculation are shown in Table l. As can be 

TABLE I 

Crystal I "' · 10-• I a · 10' I I 1:n . to•.ev 
p" = o, m 

J~ o JO•,ev 
q=m I ,. I Jm -to•.ev 

q -t m 

NaCl Oo359 I 2082 50320 -13200 23.4 4509 1-620 7 
KCl 00233 2.14 60487 - 10086 -00370 Oo444 - 1.012 
KBr 00205 

I 
3o30 60335 - 005108 -000859 0.2102 I - 0.3865 

KJ 0.196 3,53 
' 

6o186 -- 007876 -000529 004139 I - 004266 

TABLE II. 

Crystal I 1t(1) 
h 

/ -10• eV I m • 
p"=O, m 

NaCI 0,592 -00124 -18507 -1303 3907 -159.3 
KCI 00420 00092 - 009612 - Oo3782 000676 - 1.272 
KBr 00628 -0,161 - 005741 - 001618 000468 - 0,6891 
KJ 00732 -00305 - 1.186 - 0.395 00152 - 1.429 

seen by comparison of the last three columns, the 
convergence of the series in q, q 'is found to be 
quite slow, so that the results are quite rough. This 
is related to the rapid oscillation of the N a and K 
atomic functions near zero, and the insufficiently 
rapid decrease of the t/Jx.. At the same time the 
number of terms increases rapidly as q f. 0 and 
q I f. 0, 

For a more reliable calculation of I m• we calcu
lated it according to Eq. (23) with the aid of smooth
er cation functions, as proposed by Slater22 , name-
1 yl{ia (r) ,...:_, rn e-anr, where n == 2 and 2.7, 
an = 0. 733/ aB and 0.55/ aB for N a and K, respec
tively. (For convenience, the number 2.7 was 
rounded out to 3.) Then 

N . -v81t~ 16 11'af. 11 2 at- K2af 
a: '¥K = ~· -V-- (a2a1 + K 2atJ' ' 

(24) 

V.41ta 16a'a8b 5a~l1'--10a 2K 2at + K'at 
K: ·~ = - -------=.----==----

K :3;, V [a2a1 + K2at Is 0 

The calculation was performed using the same Eq. 

(23), except with different values of t/Jm/4. and 

t/Jq-m/4.· 
As can be seen from the result shown in Table 2, 

the correction terms here decrease somewhat more 
rapidly and therefore the value obtained for 1m is 
more reliable. 

For KCl, KBr, and KI crystals, in which the po
laron radius is relatively large, the Fourier coeffi
cients 1m are small compared with the kinetic ener
gy ~2K2/2M of the "free" polaron, and the solution 
of Eq. (2) may be obtained with the approximation 
of almost free electrons. Then the forbidden band 
width is 2I1m I, which is much less than both the 
minimum and maximum widths of the first allowed 
band, namely 3n2~/2Ma2 and 5~ft2/2Ma2 • Therefore 
the first allowed band should overlap the second. 
All higher bands overlap even more. One may thus 
conclude that for polarons whose quantum state ra
dius l/a. ~ 1.5a, the band structure of the energy 
spectrum is of no significance. The spectrum con
sists of close-lying and overlapping allowed bands 
with narrow (l0-3 ev) gaps. On the average the en
ergy is described approximately by Eq. ( l). 
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In the NaCl crystal 1/a. .. a, and the oscillations 
of]((} are comparable with the mean kinetic ener
gy. The approximation of "almost free electrons" 
is not applicable to a solution of Eq. (2). One may 
expect measurable energy gaps between the lowest 
allowed bands. The energy gaps are even wider for 
small-radius polarons (LiF, BaO crystals, etc.). 
For them, however, as for NaCl, the present calcu
lation gives results which are too approximate, 
since the EMM is not a sufficiently good zeroth 
approximation. Here the question of the energy 
spectrum structure goes over into the problem of 
constructing a small-radius polaron theory. 

The authors express their gratitude to Professor 
S. I. Pekar for several valuable remarks. 
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