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The equations of motion corresponding to the crystal energy, deduced previously in Ref. 1, 
are considered, The vibration spectrum for long waves is investigated. A qualitative study is 
being made of the possibility of infrared absorption by the lattice vibrations and of birefrin­
gence and interaction between the conductivity electrons and lattice vibrations. 

THE SPECTRUM OF ELASTIC VIBRATIONS 

of the diamond lattice has been investigated 
by many workers 2•3• However, a general shortcoming 
of these investigations is that they do not take into 
consideration the extent of the internal degrees of 
freedom of the atoms. In addition, the results are 
unsatisfac'tory in their consideration of the propa­
gation and absorption of light, and in many other 
problems, since they do not use the polarization 
vector (because of atomic neutrality). On the other 
hand, it was shown in Ref. l that the components 
of the atomic dipole moments P~ (Z is the cell num­
ber, s is the atom number in the cell) may be se­
lected as variables describing the internal degrees 
of freedom of the atoms. An expression for the po­
tential energy U of the crystal as a function of u~ 
(the displacement of the atoms) and P~ may not be 
considered negligibly small in comparison with the 
terms which depend only on u~. In this work we 
consider the equations of motion derived from U. 
This allows one to study from one point of view a 
series of elastic, optical, and electrical properties 
of the above-mentioned crystals. 

I. EQUATIONS OF MOTION 

The equations of motion are: 

•• l l l 
mus=- aU jau5 , 0 '=-aU jaP, (l) 

where m is the atomic mass; we neglect the inertia 
of the dipole moments. 

As usual, the solution of these equations is 
sought in the form of plane monochromatic waves: 

u! =Us exp (- iwt +iKr!), 
(2) 

707 

For dipole moments of this form the internal field 
El . d . h . f . 1 b s contame m t e equatiOns o motiOn, may e 
calculated by means of a direct summation- the 
Ewald method 4• As the result of these calculations, 
we obtained the following 

E! = Es exp (- iwt + iKr!), 

1 [16 (P· k) k -- Pk~ 
E1 = {La- - 3rt_ P- 16r: + 

k2 -k~ 
(3) 

+ Si (k t P2) + Fl (k; PI)+ F2 (k; P2)l 

E~ is the intensity at the point r~ of the electric 
field generated by all of the dipoles, including the 
one located at that point; d is a lattice constant; 
k = Kd/2 is a dimensionless wave vector; k0 = wd/2c 
is a dimensionless frequency; c is the velocity of 
light in a vacuum; 

P = P1 + P2; 

(k ~ P) = i (kyPz + kzPy) + j (kzPx + kxPz) 

+ k (kxPy + kyPx), 

where, as everywhere hereinafter, the positions of 
the coordinate axes, i, j, and k are directed along 
the edges of the cubic crystal; S = 20.11; 

F s (k; P) = e~1)Pkl + e~1)k (P, k) + e~3) (P; kk), 

(P; kk) = iP .. k~ + jPyk~ + kPzk!, 

ei1> = - 1.845, e~z> = 2.348, 

e<1> =- 2 135 e<2> =- 3 335 2 • ' 2 • ' 

e~3) = 9. 772; 
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E 2 results from E 1 by interchanging P1 and ~ and 
substituting i for-i. Eq. (3) gives the series expan­
sion of E 1 in powers of k up to the second inclusive. 
This is sufficient for long waves (k « 1), which we 
shall investigate. 

The equations of motion can be solved by the 
usual Born method, expanding the frequency ko and 
the amplitudes us and P5 in powers of k. We, how­
ever, shall use a somewhat different method. We 
introduce the dimensionless variables: 

A = tf3 /IX, B = 4b rl3 · e 
P"" ' ' C = cpli5 I 4e, 

D = dpli5 / 2e2 , G = gpd3 ; e2 , 

F = .B + C, L = D + 8G 

(a, bp, cp, dp, gp are parameters from the expres­

sion for U in Ref. 1, e is the charge on an electron, 
A is the wave length.) Then from (1) to (3) we ob­

tain equations for the amplitudes in the following 
form: 

- fl2v1 + L (v 1 - v2 ) + F (w1 - W2) 

= i[J.x [ ~ (s t v2) + ~- (s t w2) ]- [L2x 2rp (v2; W2), 

161t' x2 (w, s) s- Q2w 
Aw1 + F (v1 - v2)- -T w + 16r. x 2 __ n2 

= ip.x [~ (s t v2) + S (s ~ w2)] + {..l2x2f (v2; W 1 ; W 2), 

(4) 

the two remaining equations here and in what fol­
lows are obtained by exchanging the subscripts 1 
and 2 of the amplitudes and substituting i for - i; 
w = w1 + w2 ; s is the position of the wave vector; 

L D D F 
rp (v. w) = -8- v + ~.- s (s. v)- 7 (v; ss) + -8 w 

' •j 

c c + 4-s (w, s)- 4 (w; ss), (4a) 

Equation (4) contains K and n. It is clear that 
these equations can be presented in such a form 
that they would include any two of the three var­
riables K, n, or n. For a solution of the equations 
by the method of successive approximations, we 
shall compute one of these two variables by means 
of an independent parameter, but the other, together 

with the amplitudes v and w will be sought in the s s 
form of an expansion in powers of p.. The inclusion 
of a small parameter of fixed value p. in place of the 
variables k allows one to carry out the solution 
more rigorously; in particular, this makes it pos­
sible to take into account the large numerical value 
of M (-1010). In those cases where it does not result 
in inconsistencies, the independent parameter K, 

n, or n, should be considered to be of order of mag­

nitude p.0 = l. 

2. ACOUSTICAL VIBRATIONS 

Let us consider K as an independent parameter 
and !12 as a dependent one which iB taken to be 

(5) 

0 ' t • 
Vs = Vs + [J.Vs + fL Vs + • • ., 

_ 0 I 2 , 
W6 - W8 + fLWs + fL W 5 + .... (6) 

Substituting (5) and (6) in (4) and retaining only the 
terms- p.0 , we have zero-approximation equations: 

- n~vf + L (v~- v~) + F (w~- w~) = 0, 

A o F ( o o 161t' w1 + v1 - v2)- 3 w0 

x.2 (wO- s) s- Q~~o + 16;:- = 0. 
x 2 - n~ 

(7) 

The system (7) has the following obvious solution: 

n~ = 0, v~ = v~, w~ = w~ = 0. (8) 

It obviously has the nature of acoustic vibrations: 
in the zero approximation the frequency is zero, the 
dipole moment is absent, and the displacements of 
the two atoms of the cell are identical. 

After investigating the terms of order p. in (4) we 
find the first approximation equations, from which 
we obtain 

n~ =0, (9) 

, ' AD-- 2FC . ( + o) 
VI-V2=2(AL-2F2)lx. SxVI, 

' ' LC-FD ·· + o 
- W2 =WI= 2(AL-2P) zx (s x VI)· 

(lO) 

The second-approximation equations result in 

20 D ~, ' C +' ' 2lJ2vi- ix -~- (s; v1 - v2 )- ix 2 (s x wi- w2) 

-
-2x2 rp (v~; 0) = 0, (ll) 
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which after inserting (l) gives an equation for the 
firection of v~: 

AD2-l..'2.LC2-4FCU + + o 
D~_:v01 -+- ----,c--o~---c.,-:-c:c--- x2 (s x (s x V1)) 

' ti(AL- u~) 

vestigation of the acoustic vibrations. According 
to (13), the parameters F, C, and A, which appear 
on account of the dipole moments, enter into (14). 

3. OPTICAL VIBRATIONS 

- x2cp (v~; 0) = 0. (12) We now take n as the independent parameter, and 

Having set the determinant of this system equal to 
zero, we have a cubic equation for 0~ and, accord­
ingly, three branches of acoustic vibrations. If we 
introduce the symbols 

( J\[)2 ·~· '!.LC2 - 4fCD) e2 

b1 = 4(AL -· '.!.P) d' ' 
(13) 

and make some simple transformations, the first of 
the three scalar equations (12) takes the form 

v~x [- pv2 + b2s~ + (b2 - b1) (s~ + s;)J 

+ V~y (h3 - bd SxSy + V~z (ba- bl) SxSz = 0, 
(14) 

in which p is the density and v is the velocity of 
sound in the crystal. Comparing (14) with the analo­
gous equation of the theory of elasticity 

Ux [-pv2 + c11 s~ + Cu (s~ + s;)J 
05) 

+ Uy (c12 + Cu) SxSy + Uz (c12 + c,4) SxSz=0' 

(cik is the modulus of elasticity), we have 

These three relations can be used for determining 
the parameters of the theory. 

According to (8) and (10) the dipole moment of 
the cell is equal to zero in the first approximation 
(it is possible to show that w"' f. 0). However, a cal­
culation of the dipole moments is essential for in-

n as the dependent one: 

Substituting (6) and (17) in (4), we obtain for the 
zero approximation: 

- Q~v~ + L (v~- v~) + F (w~ - w~) = 0, 

o o o) i67t - o' 
Aw1 + F (v1 - V 2 -3 w 

+ 16 n 2s (wo, s)- wO _ O 
1t n2 --1 - · 

(18) 

[It is apparent that (18) is the same as (7)). Let us 
examine the· solution for the case when 

n2 =1= n~ =(A + 647tl3) 1 (A- 321tl3). 

The solution takes the following form: 

Q~ = (2LA- 4P) I A= ntm. v~ =- v~, 

-w~ = w~ = -- (2F I A) v~, (19) 

i.e., it has the nature of optical vibrations: the 
limiting frequency differs fr~m zero and the dis­
placements of the two atoms of the cell are oppo­
site in the zero approximation. 

From the condition for solvability of the first­
approximation equations, it is possible to ascertain 
that 0 1 = 0. Using this, from the first-approximation 
equations we obtain 

' ' -1 . + 0 
V1 + V2 = Qiim(D- 2FC/A) t (s x v1), 

D.n(n2 -1)(C-4.FS/A) [n2 ] 
w'= hm 0 . .i ---(n2-J)((s+vo),s)s-(n2-l)(s+v0). 

32-r: (n~ -- n~) n~ o x 1 x 1 
(20) 

Examining the condition of solvability of the is easy to obtain an equation for the direction of 

. second-approximation equations and using (20), it V o • 
1" 

2Qlimfl~v~ -- (D:2- FC,'A)Z n (s ~ (s ~ v~) + 1,/4ni!um(C- 4FS/ A) iw' 

+n2l.~im[cp (v~; w~)- f (vi; w~; w~)} = 0, (21) 
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in which w', w~, and w~ are substituted from (20) 
and (19). This equation gives, as is apparent, three 
modes of optical vibrations with one and the same 
limiting frequency Olim" Therefore, there is only 
one line in the first-order Raman spectrum. Optical 
vibrations with limiting frequency olim are active 
in the Raman effect since the polarizability of the 
crystal in opposite senses is dissimilar.5 This 
theoretical result was reported long ago and con­
firmed experimentally •6 

From (20) it follows that our solution cannot be 
used to find the values of n close to n0 • For 
In- nol - /1, the terms of first order become com­
parable with the terms of zero order and the series 
for solutions do not converge. Thus n == n0 is a 
singular point of this solution. 

4. RADIATION VIBRATIONS 

We now make 0 as the independent parameter and 
n dependent: 

When n t- olim and no t- 1, the zero-approximation 
equatiorts yield the following solution: 

n~ =(A+ 64~13) I (A- 32~13}, 
(23) 

(w~·S)=O. (23a) 

It describes the propagation of electromagnetic 
waves in the crystal, while the index of refraction 
n 0 corresponds with the longest wavelength. Let us 
call these·vibrations radiation vibrations. They 
differ from the usual optical vibrations for which, 
according to (19), w0 == 0, v~ .f- 0. 

The conditions of solvability of the first-approxi­
mation equations give n11== 0. Taking this into 
account, we obtain from the first-approximation 
equation 

- v' = v' =non (AC- 4FS) i (s + wfl) (w'· s) = 0, 
~ 1 2A (n2.- nz) X 1 ' 

hm 
' ' non 1(2L- n2) 2S- 2FC) . ( + o) (24) w1 - w2 = l s x w1 • 

A (n~im- n~) 

Eq. (24) indicates that the solution under consider­

ation is not applicable for IO- oliml - /1• 
The condition of solvability of the second-approx­

imation equations, taking (24) into account, gives 

{- n2w~ + qil2 [f (0; w~; wV + ~2 (s t (s ~ w~)) J 
n2 } + Q 2 (s t (s t w~}) X s =0, (25) 

n. -n2 
hm 

q=n0 (n~-1)1164~. Q =q(CI2-2FSjA}2 • 

(25) and (23a) represent a system of equations for 
n2 and the direction of w~. It is clear that only 
three of these equations are linearly independent. 
The corresponding characteristic equation is: 

n~ - n2U 2 { 2N + H [ I - ( s~ + s~ + s:) I} 

+ n• {N2 + NH [I- (s~ + st + s!)] 
+ 3H2s2 s2 s2} = 0 

X y Z ' 

(26) 

N = q (e</> + e~l) + S2/ A)+ Q I (ilrim- 0 2), 

H = q (e~3) + e~a)- 2S2IA)- 2Q I (Ofim- 0 2). 

It gives two modes of the radiation vibrations. Thus 
double refraction must take place, reaching a maxi­
mum in the vicinity of 0 1. • 

1m 

At the point 11 == nlim we have n2 = ±oo, and the 
v5 are similarly infinitely lar.ge. This indicates ab­
sorption of light in the vicinity of this point. The 
latter absorption represents an effect of first-order 
in p. - d/A. (and not zero order as occurs in ionic 
crystals), since v; == 0 and only the v; increase 
without limit. Therefore, the absorption must be 
considerably weaker than in ionic crystals; this is 
confirmed experimentally6• 

5. p.-REGION OF SINGULAR POINT 

The remarks made in connection with (20) and 
(24) indicate that the p.-region of the point n = nlim' 
n == n0 , (which we shall call the singular point) re­
quires special investigation since the solutions 
obtained (the optical as well as the radiation vibra­
tions) do not hold in this region. In order to inves­
tigate this region, we assume 

(27) 

and we consider K 1 as an independent parameter of 
order unity. Substituting (27) and (6) in (4), we ob­
tain to a zero approximation 

-n~mv~ + L (v~- vg) + F (w~- w~) = 0, 

Aw~ + F (v~- v~)- 16.-:w0j3 (28) 

+ 16r. [x~s (w0 ' s)- n~imw0 ) I (x:- nfird = 0. 
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The most general solution of this system is 

- v~ = v~, w~ = w0j2- (2FjA)v~, w~ = w0/2 + (2FjA) v~, 
(w0 • s) = 0. 

(29) 

(29a) 

It represents a superposition of optical and radia­
tion vibrations, which is not surprising, for in the 
zero approximation the singular point is a point of 
intersection of the optical and radiation modes. 

The conditions of solvability of the first approxi­
mation equation lead to the following results: 

(30) 

[ 1/2 (n~n~- 2)(0x1) w0 + iR1 (s t v~)l x s = 0, 

Q1 = 1/ 4)( 11 (C- 4F SjA), , (30a) 

R1 = )(o (4f Sj A- C) ()(g- U12i.J 1 (A- 32::;':~). 

The system of equations (30), (30a), and (29a) de­
termines the directions of the vectors v~ and w0 , 

giving a solution in the vicinity of the singular 
point. In this system there are six linearly inde­
pendent equations, since in (30a) one of the three 
scalar equations is a consequence of the other two. 
Setting the determinant equal to zero, we obtain an 
equation of fifth degree in 0~. Thus in the vicinity 
of the singular point we get five modes, which cor­
respond to three optical and two radiation modes 
far from the singular point. 

We give the name "singular" to the direction of 
s, parallel to the diagonals of the faces of a lattice 
cube. It can be shown that for non-singular direc­
tions of s, there are one optical and four mixed 
modes (Fig. 1), but the singular directions of s 
correspond to two optical, one radiation, and two 
modes (Fig. 2); the vector w0 of the radiation mode 
lies in the plane of the same Jace of the cube as 
does s. 

"' I 
FIG. l. Vibration spectra for non-singular directions 

of s. X.o and Rum are the coordinates of the singular 
point. 

Let us note that system (4) allows one more solu­
tion, for which 112 = K 2 , (n = 1), w0 II s. We shall not 
examine this solution. Although this method was 
already pointed out by Born for ionic crystal~, 
doubt arises concerning the applicability in this 
case of the Ewald method 4 for finding E~ (the 
Fourier expansion will contain an infinitely large 
zero term). This problem requires a separate in­
vestigation. 

Aj, ;r 

FIG. 2o Optical and radiation modes for singular di­
rections of s. 

6. INVESTIGATION OF THE GENERAL 

EQUATIONS OF MOTION 
We shall show here that the limitations used in 

Ref. 1 in the derivation of the expression for U do 
not disturb the generality of the qualitative results 
already derived. With this goal, we investigate the 
most general equations for long-wave harmonic 
oscillations. Substituting (2) in (1), assuming U to 
be an arbitrary quadratic form in u~ and P!, sepa­
rating explicitly the amplitude of the internal field 
E 5 , and expanding in powers of k, we obtain 

m,_,2Tis0. +. ~ (A(O)ii'ss' Ti'.•' + ~ A·(l)ii'ss' Tl's' k 
..u x' ll ~ x' x• .r* ~ x' x" y' :r" ~v' 

s'i'x" y' 

~ (2)ii'ss' l's' ) ~ 0 + kJ A_,,x•y·z' Tx• ky'kz' + Esx'Ois o: ,, (31) 
y'z' 

. { Usr'• i = I r'•- . 
x'- Psx'• i = 2 

X'= X, y, Z.(32) 

We require that the following obvious conditions 
be fulfilled: I) The system of equations (31) must 
be self-conjugate. II) The forces contained in (31) 
must vanish upon translation of the lattice as a 
whole. III) The coefficients A (O) and A (2) must be 
real, and A (1) pure imaginary, which follows from 
the expansion in powers of k. IV) The system (31) 
must be invariant relative to symmetry transforma­
tions of the crystal. The symmetry elements of a 
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crystal of the diamond type are determined from the 
conditions that (a) the center of the segment be­
tween two neighboring atoms is the center of sym­
metry and (b) the diamond lattice be longs to the 
point group T/. 

The above conditions lead to a series of rela­
tionships between the coefficients A (l), from which 
it is possible to determine the independent A <lls; 
these turn out to number twenty-six, namely four 
A(ojs: 

A (O)llll _ a' A(o)I211 _ a' 
XX - 1' XX - 2t 

A <ol2211 _a' A(0)22I2 _a' 
XX - 31 XX - 4' 

_1<1>1112 _ 1.1,· A<02212 = ib' 
4 xyz - I' xyz 2' 

A <Ill212_ .1 · A<OI2n __ .b' 
xyz - l J~, xyz - I 4 

and eighteen A <2ls: 

x'y'x"y" c= xxxx, xxyy, xyxy; 

ii' =II, 22, 12; ~s· =II, 12. 

(33) 

(34) 

(35) 

Introducing, as in Sec. 1, dimensionless quanti­
ties and calculating by means of the independent 
parameter K, we obtain in the zero approximation 
relative to p. 

- ngv~ + al (v~- v~) + a2 (w~- w~) = 0, 

( 0 0) 0 0 167t 0 (36) a2 v2 - v1 - a3w 1 - a 4w2 - - 3- w 

x2 (w0 s)- Q 2wo 
-+- 16...-: ' 0 = 0. 
' x 2 - n~ 

Equations (7) result from (36) if we assume 

a1 =-L, a2 =-F, a3 =-A, a4 =0. (37) 

Thus the generality of (7) would be invalidated only 
if a4 were to vanish. However, examining the solu­
tion of the zero-approximation equations, it is easy 
to establish that the coefficient of w0 , which equals 
-l6rr/3, does not affect the qualitative character 
of the solutions, and bears only on their quantita­
tive character. Hence follows the qualitative simi­
larity of (7) and (36), i.e., the generality of all the 
qualitative results of the zero-order approximation 
considered above. 

The first-approximation equations give signifi­
cant results only in the vicinity of the singular 

point. Therefore, we examine only that region. 
Everything concerning these conclusions results 
from the conditions of solvability of the fir~>t­
approximation equations, which after some calcula­
tions yield 

Comparing (38) with (30) and (30a), we see that 
these systems of equations differ only in their con­
stants. Therefore, all the qualitative results of 
Sec. 5 should be correct in the general case. 

Second-approximation equations are essential 
only for obtaining quantitative results: calculation 
of the corrections to the frequencies and determina­
tion of the directions of v~ and w~. Therefore, 
examination of their general form is not of interest. 

CONCLUSIONS 

l. The spectrum of vibrations consists of eight 
modes (far from the singular point- three acoustic, 
three optical, and two radiation modes). In the vi­
cinity of the singular point, the transistions occur 
from the optical modes to the radiation modes 
and vice versa. For the non-singular directions of 
s, both of the radiation and two (of the three) opti­
cal modes experience discontinuity and mutual 
transition (Fig. 1). For the singular directions of s 
only one radiation and one optical mode experience 
discontinuity and transition (Fig.2). 

2. The theory explains qualitatively the absorp­
tion of light at a frequency close to nlim' Poly­
chromism (the dependence of absorption on the di­
rection of s and the polarization of the light waves) 
should be observed. A separ&te work will be de­
voted to a more detailed and quantitative investiga­
tion of the absorption. 

3. Double refraction must take place, reaching a 
maximum in the vicinity of the singular point. A 
more detailed investigation, to which a separate 
work will be devoted, shows that the crystal pos­
sesses seven optical axes with directions of type 
(111) and (100). 

4. The conduction electrons must interact with 
both acoustic and optical vibrations, owing to the 
polarization w which is associated with them. This 
question will be investigated in a separate work. 
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5.All the results enumerated above are independ­
ent in their qualitative aspects of any special 
choice of the potential energy U. 

I take this opportunity to express my deep appre­
ciation to K. B. Tolpygo who suggested and guided 
this work. 
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Band Structure of the Polaron Energy Spectrum 
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Using the macroscopic treatment of the polaron as the zeroth approximation, the periodic 
potential of a crystal and the periodic variation of its polarizability with variations in the 
position of the polaron center of gravity are calculated in the first approximation. We deter­
mine the dependence of the energy of a crystal with a polaron on the position of the pola­
ron's center of gravity, and it is found possible to treat polaron motion as the motion of a 
particle with the polaron mass M in a field with a periodic potential. We determine the 
widths and spacings of the lowest forbidden and allowed energy bands. A numerical calcu­
lation is performed for NaCl, KCl, KBr, and KI. 

1. STATUS OF THE PROBLEM 

GREAT SUCCESSES in the theory of the electric 
conductivity of ionic crystals were attained as 

a result of Pekar's polaron theory 1 • 2 in which the 

interaction between electrons and polar vibrations 
of the crystal are introduced into the fundamental 
Hamiltonian of the problem. The periodic potential 
of the crystal is eliminated with the aid of the ef­
fective-mass method 3 (EMM). It is found that elec­

tron motion is composed of vibration within a polar­

ization well and wave-like translation of the elec­
tron together with the polarization well through the 
crystal 4 • For a fixed crystal polarization the elec­
tron energy spectrum is found to be discrete. At the 
same time, the problem of electron and ion motion 
possesses translational degeneracy2 , so that the 
energy spectrum of the whole crystal is found to be 

continuous: 

where K and M are the wave vector and effective 
mass of the polaron5 , ][!jl] is the energy of the crys­

tal with a stationary polaron, and (i.) is the limiting 
longitudinal optical crystal vibrations. 

The translational degeneracy of the problem of 
polaron motion led several authors6 • 7 to assert that 

the electron energy spectrum should have a band­
like structure, and that therefore polaron theory is 
essentially band theory in which the interaction be­
tween the electron and the crystal polarizations has 
been accounted for. This leads only to a formal 
change of the specific parameters of the current car­
riers, and according to Tiablikov 7 is of no great con­
sequence, since these parameters are usually ob­
tained experimentally anyway. As was asserted by 
Tiablikov8 , Eq. (1) gives the energy only in the 
neighborhood of the lower edge of the first polaron 
band. 

In other works 9• 11 , Tiablikov suggested a method 
for calculating the electron energy spectrum by ac­
counting for interactions with the phonon field sim-


