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The functional-derivative technique is used to investigate the annihilation (or production) 
of two interacting particles which may also exist in a bound state. Covariant equations have 
been found for the Green function (probability amplitude) which describes the annihilation of 
an electron and a positron into two quanta as well as for the Green function of the reverse 
process. The equations thus obtained have been used to solve the problem of interaction be
tween the electron and positron during pair production (or annihilation) with account of radia
tive corrections. 

RELATIVISTICALLY invariant equations for 
bound states were obtained by various au-

thors l-S. Not enough attention, however, was paid 
to equations that take into account a possible 
annihilation of particles. In the present work the 
functional-derivative technique is applied to the so
lution of the problem concerning the annihilation 
(or production) of two interacting particles which 
rnay also exist in a bound state. \\hile up to now 
functional equations were derived for the probabil
ity amplitudes (Green functions) describing transi
tions not accompanied by any change in the number 
of particles, in the present case functional equa
tions have been set up for the probability amplitudes 
(Green functions) describing the annihilation or pro
duction of particles. The resulting equations are, 
therefore, of a different form. Starting with these 
equations, it is easy to obtain the wave equation of 
positronium, the possible annihilation of the elec
tron and positron being taken into the account 6 • 

Such generalization of the method of functional de
rivatives to problems involving a change in the 
number of particles during the studied process en
ables us to calculate with any desired accuracy 
the probability of a two-photon (and in general, 

n-photon) annihilation of particles existing in a 

bound state. The results of previous works 7- 9 

dealing with the annihilation of two interacting par
ticles in the S and P states are essentially repro
duced if we limit ourselves to the first non-vanish
ing approximation. The contribution of Coulomb 
interaction in pair production is also accounted 10• 

The proposed method, however, makes it also pos
sible to find the radiative corrections for the above 
processes (cf., Hef. 11 and 12). The investigation 
of radiative corrections for the probability of pho
toproduction and annihilation of positronium con
firms the results of Ref. 13 with respect to the 
infra-red divergence in bound states of the parti
cles. 

1. DERIVATION OF THE EQUATION FOR THE 
GREEN FUNCTION OF TWO PARTICLES 

ANNIHILATING INTO TWO QUANTA 

The Green function G2 (x1 x 2 , ~e) describing the 
transmutation of two photons into an electron-posi
tron pair (and the two-photon annihilation of the 
particles as well) is defined, according to Ref. 14, 
in the following way: 
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where G (x1 x 2) is the Green function of one parti
cle 1, J (x) is the external current, and 8/ o J(x) de
notes the functional derivative with respect to the 
current 1• ljJ (x) and A ( ~) are the operators of the 
free fields of electrons and photons respectively, 
and the brackets < ... > should be understood to 
mean, for example, 

<~ (x1) ~(X2)) = [T (~ (xl) ~ (x2) S)lvacS~~c 

=[ST(~(x1)(j}(x2 ))] s- 1 , 
vac vac 

(l ') 

where the sub script "vac" indicates that the corre
sponding expression is averaged over the state of 
the vacuum. The index T denotes the T-product of 
operators standing within the parentheses and, oper

ators in the Heisenberg representation are every
where in boldface. Furthermore, 

Hint(XJ=(-J(x)+j(x))A(x), (1 11 ) 

j~'- (x) = ~ j~r; (~ .. (x) ~ 13 (x)- YC3 (x) ~" (x)), (1 11') 

while If= ljl*yo, yo= (3 and /,2,3 = {3al,2,3. 

Besides, the system of units in which 1t = c = 1 
is always used and the following summation rule is 
adopted: ab = a0b0 - a 1b1 - a2b2 - a 3b3• 

In order that the electron and positron (with 
coordinates x1 and x2 respectively) enter the theory 
symmetrically, we shall go over il! l<";q, {1) to the 
charge-conjugate field with respect to varta:.le x2 , 

i.e., we shall exchange v;(x2 ) by o/'(x2), so that the 
Green function Gep describing the transmutation of 
two photons into an electron and a positron will he 
now of the following form: 

Gep(xtx2, ~n = i <~ (x1) tjl' (x2 ) A(~) A(~')> 

- i (y (xt) ·Y (x2)) <A(~) A(~')), 
(2) 

where ljJ '(x2 ) is the field operator, charge conjugate 
with ljJ (x2): 

·~~ (x) = C0 p'f., (x), tJla (x) = Ca~~ (x), 

C•r --- C-1, CT C C T C J=-, •=-r· 

(l) 

\\e shall define the Green function Gep describ
ing the reverse process, i.e., the annihilation of an 
electron and a. positron with the emission of two 
quanta, in the following way: 

Gep (W, X 2X 1) = i <A(~) A(~')~' (x2) y (x1)) 

- i <A(~) A(~')) <f' (x2) y (xi)). 
(3) 

It can be easily seen that all the relations ob
tained for Gep (x1 x 2 , ~~') will he fulfilled for the 
function Gep ( ~~~ X2 x1 ) if we make the following 
substitutions: 

(4) 

(the last one for the momentum of both the electron 
and the positron). We shall limit ourselves there
fore to the derivation of the equation for Gep only, 
since from this will follow automatically, taking 
into account relation (4) , the equation for Gep' 

In the following it is convenient to make use of 
the matrix notation of Karplus and Klein, which 
consists in the following: the set of all coordinates 
and the spinor indices of a particle will he denoted 
by one number, while ~(or C ~~~ ... ) will he de
note the set of all coordinates and projections of 
the photon polarization vector. The matrix index 
will be represented as the argument of a function, 
being a number in the case of a particle and ~ 
(or e. ~II • •• ) in the case of a photon. Summation 
is understood in case of repeating arguments (for 
the spin indices and the projections of the polari
zation vectors) and integration in the case of coor
dinate variables. In this notation, the functions 
y(~, 12) and C(12) have the following meanings: 

r (~. 12) == r:~. o (E- x1) o (x1 - x2 ), 

C (12) =: C .. , ... o (x1 - x2). 

To find the equation satisfied by the function 
Gep(12, ge) we shall introduce, following 

Schwinger1, the auxiliary function !{g) of the 
external sources of the photon field ll (~) does not 
contain field operators], i.e., we shall assume again 
that the interaction operator Hint is of the form 
Hint = (- f + j) A. All the Green functions deter
mined above will then represent functionals of the 
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sources ], depending on them through the operator 
S( 1" ). It should he assumed henceforth that ] = 0 
when the Green function is applied to the calcula
tion of real physical processes. 

If we make use now of the fact that in the 
Heisenberg representation the electron and positron 
operators fulfill the Dirac equation, respectively,* 

(p (11') -er (~, 11') A (€)- mo (11'))~ (1') = o, 
(5) 

(p (22') + er (~, 22') A (€}- mo (22')) ~' (2') = o, 
(5') 

we can write the functional derivative equation for 
Gep (12, .;.;~). In fact, applying the operator 
p (ll')- mo(lY) to the function Gep and taking 
into account relations (5) and (5') we obtain 

JP (22') =. p (22') + q ([ 22') (A(~) 

- mo (22') - iey (f, 22') a;a1 (~) 

by replacing mo(22') + iey([ 22')8/o](t) by the 
mass operator (cf., ilef. 1) MP (22') and from Fe(ll') 
by the sign of the charge, to both sides of equation 
(8), we shall obtain the following functional equa
tion for G : ep 

FP (22')&e ( 11 ') Gep ( 1 '2', W) 

"= - q (€, 11 ') C ( 1 '2) ~ D (~~') 
'SJ(~) (10) 

- ie·r (~ 11 ') c ( 1 '2) ~<A(~)> <A (~')), 
'SJ(~) 

D (~:;') == 81~~') (A(~)); 
where D ( .;, .;') is the photon Green function 1• 

(p(11')-mo(l1'))Gep (1'2, W) 

= iq (f, 11') <A(~~ (1') 'f' (2)A (~)A(~')) 

It is convenient to write the first term of the 
right-hand side of Eq. (10) in another form, making 

(6) use of the relation 

- ie1 ~. 11') (A~)~ (1') ~' (2)) (A(~) A(~')). 

Making use of the self-evident equalities 

~ <·li (1) •Y (2)) = i <A (f) v (1)'li' (2)) 
8J (~) ' ' • • • 

- i <·¥ (1) y' (2)) (A(~), 

~ <~ ( 1) •li' (2) A (~) A (~')) (7) 
8J (~) • 

= i <A (f)~ (1) 'f' (2) A(~) A(~')) 

- i <•¥ (1) •j/ (2) A (0 A(~')) <A(~)> 

we can write Eq. (6) in the following form: 

,re (11') Gep(1'2, ~n 

= e1 (f, 11 ') <~ (1 ') y' (2)> 8/CE,) <A(~) A W». (8) 

where the following notation has been introduced: 

,ye ( 11 ') == p ( 11 ') - q ([ 11 ')<A~)> - mo ( 11 ') 

+ iq ~. 11') a;aJ (~). (9) 

If we apply from the left the operator FP(22'), which 
differs from 

- e21 (f 11') C (1'2) ~ D (~n 
' 8eJ (~) 

= ie21 (§, 13) C (32) IJO (~~') (ll) 

xc~1 (2'3') -r (f', 3' 1 ') Gep ( 1 '2', ~n, 

the correctness of which can he easily ascertained 
expanding both sides of Eq. (ll) in a series in e 2• 

D0 denotes the zero approximation of the Green 
function of the photon. 

{FP (22') pe (11')- I (12,1 '2')} Gep (1'2', W) 

=- iq (f, 11 ') C (I '2) ~(A(~)) <A (~'))?2) 
8J (~) 

where the interaction operator is defined, according 
to (10) and (ll), in the following way: 

I (12, 1'2') Gep(1'2', ~n 

= ie2·1 ~. 13) C (32) D0 (~~') 

X c-1 (2'3')1 (~, 3' 1 ') Gep ( 1 '2', W) 

+ FP (22') [mo ( 1 I') - iq ("§", 11 ') ~ 
8J (~) 

- Me(11')] Gep(1'2', ~~'). 

( 13) 

Eq. (13) may he transformed by means of Eq. (12) 
into a functional equation for the operator 1: 
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I ( 12,1 '2') Gep ( 1 '2', ~~') = ie2·c(f, 11 ') D (g~') rP ("f', 22') Gep ( 1 '2', ~n 

+ ie2i (~. 13) c (32) D 0 (~~') c-1 (2'3')1 (f, 3' 1 ') Gep ( 1 '2'' W)-

- e~1 (f," 11 ') Ge( 1 '3) 1 (r, 33') C (3'2) 82 (A(~)) 1 A(~')) 
8J (~) 8J (~') ' 

(14) 

- ie2i (f," 11') G e ( 1,3) - 8_ (/ (32 3'2') G (3121 ;~,)) 
' 8eJ (~) ' ep ' ' 

where 

rp (~. 22') == aFP (22') 1 oe <A (~)), 

denote vertex operators. 
Since the term in Eq. (14) containing the func

tional derivative of (/Gep) is of secondary impor
tance compared with other terms (this term includes 
the radiative coiTections), Eq. (14) can be solved 
for the operator I by the method of successive ap
proximations. This makes it possible to find the in
teraction operator in any approximation of e2• If 
the iteration process of solution of Eq. (14) is con
tinued ad infinitum, the operator I will be repre
sented as the sum of an infinite number of terms 
corresponding to all the irreducible diagrams2 de
scribing both the electron-positron interaction and 
their two-photon annihilation. The interaction oper
ator found in this way yields, upon substitution in 
Eq. (12), when]= 0, the covariant equation for the 
determination of the Green function Gep· 

It should be noted that, although the interaction 
operator I is found in the form of a series in e2, the 
fact that we obtain the corresponding approxima
tions of the Green function Gep does not mean that 

this function has been expanded in powers of the 
charge. The situation we encounter here is similar 
to the case of the l3ethe-Salpeter equation 2• In 
fact, if we retain in the operator only the terms 
proportional to e2, then it is equivalent in the 
S-matrix scheme to accounting, in the infinite sum 
determining Ge P, of an infinite number of reducible 
diagrams of the ladder type* (Fig. 2) beside the 
irreducible diagram of Fig. ( 1). 

~-------

__j ______ _ 
FIG. l. 

In order to obtain finite results (for ] = 0) it is 
necessary to carry out a renormalization of the 
operators F(ll'), F(22') and 1(12, 1' 2') in Eq. (12) 
at all degrees of approximation in e2• As it can be 
seen from Eq. (14) and the relation F = c- 1, the 
renormalization ofF ( ll'), F (22 ') and I (12, 1' 2 ') 
is carried out in the usual way (c{., for example, 
l1ef. 14) 

Eq. ( 12) will take the following form for ] = 0 and 
for the operator I corresponding to the first non
vanishing approximation in e2 

{ F 0 (22') f'O (II') - ie2"[ (( II') D 0 (E') ·1 (~', 22') 

- ie21 (~. 13) c (32) D0 (t~') c-1 (2'3') 1 ~',3'1 ')} Gep (1'2', ~n 
(15) 

= - e2 j (f, 11 ') G0 ( 1 '3) I(~'. 33') c (3'2) (D 0 (~~) J)O (~'n + LO (~f) £'1(~'1)), 

where the index 0 denotes that the functions are 
taken in the lowest order in e2 • The indices p and 
e in G and F may be dropped for f = 0. 

The first term of the operator I in (15) represents 
the interaction of particles by means of exchange of 
one virtual quantum, while the second one refers to 
the interaction of particles due to a single-photon 
virtual annihilation. 

Hereinafter we shall be interested in the interac
tion operator I, taken with an accuracy of e4 • For 
this purpose, it is necessary to calculate in Eq. 
(14) the variational derivative of (1(1) Gep) with re
spect to the cuiTent, where 1< 1) is the first non-

*For brevity we omitted diagrams corresponding to 
the single-photon virtual annihilation of particles. 
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should be taken into account. vanishing approximation of the operator [. Besides, 
in all other terms of the right-hand side of Eq. 04) 
the functions G, D and r should be taken in such 
approximation that the terms up to e4 inclusively 

For the calculation of the variational derivative it 
is convenient to represent (!< ll Gep), by means of 
relations ( 14) and (12), in the following way: 

{ ( FP (22') F-e (I I') - ie21 ("f, I 1 ') D0 (tf') 1 (f, 22') 

-ie2r0. 13)C(32)D0 (~f')C-1 (2'3')r (~', 3'1')) Ge(1'5)GP,(2'4)} 

x/(1)(54, 5'4')Gep(5'4', ~n = 

= - e2T ("f. I I') ce {1'3)1 ~'' 33') c (3'2) 02 <A(~)) <A W>:> 
'OJ (~)'OJ(~') 

+ e3"( ~. 11') D0 M'h ("f', 22') ce (1'3) GP (2'4)1 ~ 33') c (3'4) 

x 13 = <A(~)>< A(~'))+ e3l (f, 13) c (32) D0 (~~') c-1 (2'3') 
'OJ ( ~) 

X 1 ("f', 3'1 ') G e( 1'5) GP (2'4)1 (~ 55') C (5'4) ~ <A(~)) (A (~')). 
'OJ ( ~) 

derivative 

(16) 

Denoting for the time being the left-hand side of 
Eq. (16) by A (12, 54)1(1> (54, 5 '4 ') Gep (5 '4 ', ~e) 
and the right hand side by 8 (12, ~~'), we shall 
rewrite Eq. (16) in the form 

0 (fOIG )i0J =-A -1 I3A (J(l)G ) -l- A -I~~- (18) 
e p , 'OJ e p r 'OJ • 

A(l(l>cep) =B. (17) 

From this we obtain the expression for the required 

After a calculation we obtain (for J = 0) the fol
lowing expression for the interaction operator l with 
accuracy up to e4 : 

where 

I (12, 1'2') cep (1'2', ~n = l; (12, 1'2') cep (1'2', ~n 

- e2f ~. 11') G (1 '3) r (~', 33') C (3'2) (D ~~) D ~'~') + D ~q D (~~)), (19) 

l; (12, 1'2') = ie2f ~. 11') D (~~') r (~, 22') 

- + ie2"[ (t 13) c (32) D0 (~f') c-1 (2'3') I (~'' 3'1') 

-+ (ie2)2"[ ~' 13) G0 (33') ·; (t 3'1') D0 (~~') D0 (~;') "[ (;;', 24) G0 (44') ·; (t', 4'2') (19') 

+ (te2) 21 (~, 13) G0 (33') T 0, 3'5) C (52) D0 (~~') D0 M') 
X [C-1 (1'4) 1 (~, 44') G0 (4'6) "[ ~',62') 
- c-1 (2'7'h (~', 7'7) G0 (75')1 (f, 5' I') J. 

As it can be easily seen, the interaction operator 
l (19) contains two groups of terms. The first group, 
denoted by l i' is determined by the effects of ex
change of one and of two virtual quanta and the 

one-and two-photon virtual pair annihilation. This 
group coincides exactly with the electron-positron 
interaction operator, found in Ref. 6. The second 
group of terms in expression (19) is determined by 
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the possibility of the real annihilation of particles. 
The required equation for the Green function Gep 

with the interaction operator I calculated up to e4 

inclusively is of the form: 

{F(22')F(ll')---1;(12, 1'2'}Gep(l'2',~n 

=- e2r (f, 11 ') G (1 '3) r (f, 33') C (3'2)(D 6~) 

D (f~') + D (§~') D (f;~).) (20) 

where the operators F ( 11') and F (22 ') contain also 
the radiative corrections up to terms proportional 
to e4 • The latter can be easily found if we note that 
F = G-1 and make use of the corresponding correc
tions 15 to the single-particle Green function G. 

E q. (20) describes the production (or the annhila
tion, if transformation (4) is carried out) of free and 
bound particles. It can he applied as well to the 
calculation of radiative corrections to the photo
production and the single-photon annihilation of 
positronium in an external field. The application of 
Eq. (20) leads to the following wave equation of the 
electron and positron with possible annihilation of 
the particles: 

{F(22')F(ll')-l; (12, 1'2')}'F(1'2') =0, (21) 

where 'II (1'2 ') is the wave function of the electron 
and positron and the operators F and I i were defined 
above. This wave equation for the system electron- 1 

positron was obtained by another method in the work 
of Karplus and Klein 6 • 

The generalization of the results for the case of 
the n-photon annihilation of particles is straightfor
ward. 

2. ACCOUNT OF THE INTERACTION BETWEEN 

THE ELECTRON AND POSITRON DURING 

PAIR PRODUCTION 

As an application of equations derived in the pre
ceding paragraph we shall consider the problem of 
accounting for the electron-positron interaction dur
ing pair production (or annihilation), paying atten
tion to radiative corrections. 

The interaction between the electron and positron 
is usually not taken into account in all calculations 
of pair production. The final state of each particle 
is considered as free. This is caused by a consid
erable simplification of calculations involved, 
since accounting for the interaction between the 
components of a pair correspond to taking into 

the account the higher approximations of the scat
tering matrix. 

It was established by Sakharov 10 that for the 
case of a small relative velocity of produced parti
cles, the account of the Coulomb interaction reduces 
to the multiplication of the differential cross-sec
tion daf of the free-particle production by the factor 

I t/J(O) 12 / 11/Jf(O) I\ where 1/J(x) is the non-relativis
tic wave function of interacting particles in the rel
ative system of coordinates and t/Jf (x) is the wave 
function of free particles, 

(22) 

where da is the differential cross-section with the 
interaction between the produced particles taken 
into account. 

\,e shall show in which way relation (22) should 
be generalized for the case of arbitrary relative 
velocity of produced particles and an arbitrality 
high degree of approximation.* For the sake of gen
erality we shall deal first with interacting particles 
which are not necessarily in a hound state, while 
for simplicity we shall study in detail the case of 
pair production by two quanta. For the case of pho
toproduction in an external field it is necessary to 
add to the matrix element considered below a certain 
number of matrix elements corresponding to the 
single, triple, etc., scattering of the produced par
ticle py the external field (higher Born approxima
tions). These matrix elements can be found by 
means of the Green functions Gep (12, ~e' e,), 
Gep ( 12, ef e'' e' ), etc., describing pair production 
by two quanta with the complementary emission of 
one, two, etc., quanta. The given proof is after
wards extended for the case of pair production in an 
external field. 

a) First non-vanishing approximation 

The relation (22) can be easily obtained if we 
make use of the expression ( 15) for the Green func
tion describing the photoproduction of interacting 
particles. In fact, the solution of Eq. (15) is of the 
form 

*The problem whether Eq. (22) remains correct for 
higher ap(X"oximations was considered by Sakharov 10 • 

In that work, however, the meaning of higher approxima
tions remains unclear, since non-covariant perturbation 
theory is used. 
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Gep ( 12, ~~') = -- e2K ( 12, I '2') "I (f. I '3) G0 (33') r (~' ,3'5) c (52') (D0 (~~) D 0 (~T) 

+DO(~-~') DOw~)). 
(23) 

where K (12, r 2 ') is the Green function of the inter
acting electron and positron. Making use of Eq. 
(23) we can write the amplitude .-l of photoproduc
tion of particles as 

X G0 (I '3) "i ((;', 33') C (3'2) <.D,ill' (~~') 
(24) 

=-2 Vke:. ~ lf' (xlx2)(lran(x lx2)l r' Cei(kx, + ,,,), 
0 0. 

where the wave function of produced particles 'P 02) 
fulfills Eq. (21), with the operator /i containing only 
terms proportional to e2 • 

<J)kh.' (~:;') = : (k0k~ )-';, [/~~ 1:~, cxp i (k'; + k'~') 

+ !,. !r' · (k"' + k~"")J v;' v; eX p l ~ ~ 

is the symmetrized function of photons with mo
menta k and k' and polarization l' and l r', while 
A "IJ 
l = y l 11 • 

The calculation ~f the matrix element (24) with 
the exact function Ill (12) of interacting particles is 
difficult. \\e shall, therefore, as in the non-rela
tivistic case (22), find the relation between the 
photoproduction amplitude of interacting particles 
and the amplitude of photoproduction of particles 
which are free in the final state, this task being 
much more simple. 

The wave function I!JE o-(x1 x2 ) of interacting par
ticles, entering into Eq. (24), is an eigenfunction of 
the total energy E and also of all other constants of 
motion a, forming the given full set of physical val
ues. We shall denote by lllfo-(x1 x2 ) the wave func
tion of free particles which is an eigenfunction of 
the full set E and a. Since, however, the equations 
of motion (determining the eigenvalues of E) of the 
wave functions 'PEa- and IJi fa- are different, the fol
lowing expansion is true: 

(25) 

The coefficient C (E, E ') is a 0-like function with a 
sharp maximum at the pointE'= E, while interac
tion disappears, e2 -+ 0, the coefficient C (E, E ') 

tends to o(E - E '). This means that the essential 
domain of integration over E 'is, for the coefficient 
C(E, E'), the region close to E. We shall, ther.efore, 
bring the smooth (with respect to E ') function Ill f 'S 

outside the integral sign at the maximum point of 
the coefficient (E = E '), and obtain as an approxi
mation 

= (\ C (E, £') dE'l 'Yr'' (x1 x2) := N 'Yr'' (xlx2), ,j ) 
(26) 

where the coefficient N is defined by the relation 

(27) 

where t/;Eo-(0) and tj;fEo-(0) are the same wave func
tions as in E q. (26) in relative coordinates, taken 
at the point x = 0. For the square of the absolute 
value of N we have 

(identical indices denote summation and the indices 
E and a are omitted). 

The amplitude (24) of the photoproduction of in
teracting particles can be now written, making use 
of (26), as follows: 

vl = N'' [- e2 'Yf (12) "[ (~. 11') 

G0 (1'3) ·r (G', 33') C (3'2) <Dhk' (~~')]. 
(29) 

The coefficient of N* in (29) represents the ampli
tude of photoproduction of free particles. 

Consequently, if we denote the differential cross
section for the photoproduction of free particles by 
da f' the differential cross-section d a for the photo
production of a pair of interacting particles can he 
written in the form 

do= [[;i-(0)·~(0))/(~£ (O)•h (O))]daf., (30) 

where (f(O)tj;(O)) = Sp[f(O) tj;(O)], and the wave 
functions (in relative coordinates) tj; and tj; f of inter
acting and free particles respectively are eigenfunc
tion of the same set of values. 

In contrast to Eq. (22), Eq. (30) is true for arbi
trary relative velocities of produced particles, in-
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eluding relativistic values. For small relative ve
locities of the produced particles the coefficient 
(!;& (0) tjJ (0)) is equal to its non-relativistic value 
and relation (30) coincides with formula (22) given 
by Sakharov 10 • 

If pair production takes place in the external 
field of a nucleus of charge Ze, then, in order that 
Eq. (30) be applicable, it is necessary that the 
produced particles move with relativistic velocities 
(namely Ze2 /1fv1 « 1, Ze2 /1i:v 2 « l), since in der
ivation of Eq. (30) the external field is regarded as 
a perturbation, while the relative velocity of these 
particles can he arbitrarily small. 

We shall prove that Eq. (30) remains in force when 
we take into the account radiative corrections of 
any order. (~(0) tjJ (0)) should then be calculated in 
Eq. (30) with the same accuracy that is chosen for 

dar 

h) Radiative corrections 

The amplitude of the photoproduction of the inter
acting electron and positron can he written using 
Eq. (20) as an approximation with first order radia
tive corrections: 

A = - e2'¥ (12)1 (~. 11 ') G0 (1 ',3)"[ w' 33') c (3'2) <Di<h' c;n + 
+ ie4'£1' ( 12) ., (~. 11 ') G0 ( 1 '3) "[ (~,33') G0 (3'5) D0 (1 ~')"[(~',55') G0 (5'7) "( w' 77') 

.x C(7'2) <!)""'(~~') + ie4'¥ ( 12) T (~, 11 ') G0 ( 1 '3) T (~,33') G0 (3'5) D 0 (~ {')"( (f1,55') (31) 

X G0(5'7) 1 W, 77') C (7'2) <Dhl1' (~~') + ie4'Y ( 12) T (~, 11 ') G0 ( 1 '3) 1 (-g,33') 

X G0 (3'5) D0~ f) I(;', 55') G0 (5'7) I~'' 77') c (7'2) <llkk' P'). 

Calculating in (31) the matrix coefficients propor
tional to the highest (fourth) power of e we can 
make use of relation (26), remaining within the 
limits of the given accuracy. Such an approximation 
for the wave function 'I' ( 12) of interacting particles 
is, however, not satisfactory for the calculation of 
those matrix elements in Eq. (31) which are propor
tional to e2 • It is necessary to introduce a correc
tion of the order e2 into the approximation (26) of 
the wave function '1'(12). Owing to the weakness of 
the electromagnetic binding, this can he done by 
successive approximations, using for this purpose 
the wave equation of interacting particles (21) in 
the integral form 

\{'' (12) = "''•(O) ( 12) 

+ G (13') G (24') Ii (3'4', 1'2') 'F (1'2'), (32) 

where ljJ (O) fulfills the equation for free particles 
F(ll')F(22') 'l'(O)(l'2') = 0, and the particle in
teraction operator I i is assumed to be given [cf., ( 14) 
and (19)] in the form of a series in e2 • In fact, the 
exchange of the wave function of the interacting 
particles for the wave function of free particles 
multiplied by N means that we neglect in some way 
the interaction between the particles.* The pro
posed method of successive approximations make a 
correction for this interaction. 

\1 e shall obtain the first correction to the zero
order approximation (26) if we exchange the wave 
function ljJ (1'2 ') on the right-hand side of Eq. (32) 
by its zero-order approximation and in the operator 
I i we shall leave only the terms proportional to e2 

(denoted below by I~ 1). We have then 
1 

1F<1> (12) = ( N'l'£ (12)) + G0 (13') G0 (24') 1)1 > (3'4', 1'2') ( N'l'£ (1'2')). (33) 

For the amplitude (31) we obtain now, using Eq. (26) and (33) 

A = N* [- e2'F £ (12)"[ (~, 11 ') G0 ( 1 '3')T (~', 3'5') C (5'2) <DM' (~~') 

+ ie4'¥ f ( 12)"[ (-g,22') D0 (~ ~'h(~'' 11') G0 ( 1 '3) G0 (2'4 h (~. 33') G0 (3'5) 

X"((~', 55') C (5'4) <Dhh' (~~') + ie4"'''£ (12) 1 (~, 11 ') G0 ( 1'3) "( (~, 33') Gr. (3'5) 

X D0(~ n T (T'' 55') G0 (5'' 7) T (~'' 77') c (7'2) <Dkh' (~~') + ie 4'Y f ,( 12) I(~. 11 ') (34) 

X G0(1'3) T (~. 33') G0 (3'5) D0 ~ ~-) '(~·.55') G0 (5'7) '~. (~', 77') c (7'2) <Dkh' (~~') 

+ ie4o/£ (12) '( (~. 11') G0 (1'3) T 0. 33') G0 (3'5) D 0 ~f) T (~',55') G0 (5'7) T (§', 77') c (7'2) <Dhh' (~~')]. 

*It should be noted that the interaction between the particles is already accounted for to a large extent in the co
efficient No£ the wave function of free particles (26) since the coefficient is proportional to t/J(O) -the exact wave 
function of intefacting particles for x = 0. 
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The photoproduction amplitude of interacting par
ticles with the account of the first two radiative cor
rections differs therefore from the photoproduction 
amplitude of free particles also by the factor N* 
and, consequently, Eq. (30) remains in force and is 
even more exact since (t/J (0) t/J (0)) is now calcu
lated with the same degree of aturracy as d a£. 
Correctness of Eq. (30) with radiative corrections 
of the n-th order in e2 is proved in an analogous 
way. It is only necessary to bear in mind that 
using the method of successive approximations for 
finding the (e2)n -th order correction to the corre
sponding approximation of the wave function, Eq. 
(32) should be used with the operator I i written with 
corresponding accuracy, i.e., with terms up to the 
order (e2)n inclusive only. 

It can be easily seen [cf., Eq. (4)] that in the 
case of annihilation of an electron-positron pair we 
again obtain Eq. (30). 

c) A Note about the Bound State 

If the produced (or annihilated) particles are in a 
bound state, the total energy of these particles can 
be written 

E = c[)-s, (35) 

where e: > 0 is the binding energy (e:/m"-'e4 ). Eq. 
(26) can then he written 

"a ) where IJ! f' (x1x2 is the wave function of free par-
ticles with the total energy <f5. and zero relative 
velocity. This function enters Eq. (30) in the case 
of production of particles in a bound state. 

In conclusion, the author wishes to express his 
gratitude to A. D. Galanin for advice and discus
sion of the results. 
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