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radius attains such a value that the energy of nu
cleons with the largest value of angular momentum 
equals the Fermi limit. This makes it possible to 
explain qualitatively the experimentally observed 
fact that the mass of the larger fission fragment is 
is equal for different elements. As it is well known, 
the mass of the lighter fragment varies within much 
wider limits. Evidently, for all studied fissile nu
clei, the maximum values of the nucleonic angular 
momentum coincide prior to fission. Most probably, 
all of them then posses a pair of neutrons with an 
angular momentum of the order of 5-6. The angular 
momentum of these nucleons determines the cross
section of the wider end of the nucleus which sub
sequently forms the heavier fission fragment. It 
follows from this approximate quantization of the 
size of the heavy fragment that the variations in 
its mass are smaller than is the case for the lighter 
fragment. 
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The problem of singling out the collective degrees of freedom of a system consisting of 
N interacting particles is considered. It is shown that for some special states of internal 
motion, the energy of the system in the center of mass system can be represented as the 
sum of the energy of internal motion and the rotational energy. The concept of the moment 
of inertia of a system of N interacting particles is introduced. 

INTRODUCTION 

AT PRESENT it has been established that the 
lowest excited states of nuclei in the mass 

number range 150 < A < 190 and A > 225 are rota
tional states. Such states arise in Coulombic exci
tation of the nuclei, in processes of radioactive de
cay, and also in inelastic collisions of particles 
with the nucleus. 

An explanation of rotational states of the nucleus 
in the quasi-molecular model of the nucleus pro
posed by A. nohrl is related to the motion of a 

wave around the nucleus. The nuclear matter is re
garded as an incompressible, irrotational fluid (the 
hydrodynamical model). The part of the nuclear 

matter which participates in the rotation, according 
to the hydrodynamical model, is proportional to the 
square of the deviation of the form of the nucleus 
from a sphere. If we assume that the nucleus has 

the form of an ellipsoid of rotation with semiaxes 
c and a, then the moment of inertia of the nucleus 
is given by 

J = Ij5 mA (cz- a2)2 / (cz + az), 
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where m is the mass of the nucleon, and A is the 
mass number of the nucleus. For small deviations 
from spherical form J= 2/ 5 mA R~(I~.R / R 0 ) 2 , where R0 

is the radius of the sphere with volume equal to 
that of the nucleus, and !1R is the difference be
tween the larger and the smaller semi axis. If it is 
assumed that the nuclear charge is uniformly dis
tributed, then the quantity !1R/R0 will correspond 
to the quadrupole moment Q0 = 4/ 5 ZR~t1R / Ro· in 
a coordinate system fixed with respect to the nu
cleus. Determining M/R0 from experimental val
ues of the quadrupole moments, we find values of 
the moments of inertia (for R = 1. 2 A% lo-u em.) 
which are 3-5 times less than the experimental val
values2. In addition, it is found that the experi
mentally determined moments of inertia of nuclei 
with odd A are (up to 40 percent) larger than the 
moments of inertia of even-even nuclei with approx
imately the same deviation from spherical form3. 
Both of these facts indicate the inadequacy of the 
hydrodynamical model of the nucleus2, 3, In this 
connection, a number of papers have appeared re
cently concerning the separation of collective and 
one-particle degrees of freedom in nuclei. In the 
paper by lnglis4 the kinetic energy of rotation was 
obtained by studying the motion of the nucleons in 
the rotating self-consistent field of a three
dimensional harmonic oscillator, which deviates 
slightly from spherical symmetry. Similar calcula
tions are carried out by A. Bohr and Mottelson3 
who take into account deviation from the self
consistent field due to the sum of pair interactions. 
In both of these papers over-determined coordinate 
systems are used, i.e., coordinates describing the 
orientation of the self-consistent field and coordi
nates of the center of mass are introduced as addi
tional superfluous variables. As is well known, a 

similar difficulty concerning the center of mass co
ordinates occurs in the shell models. It is usually 
assumed that for a large number of nucleons the su
perfluous coordinates change only slightly the re
sults of investigations of internal nuclear motions. 
However, in investigations of the collective mo
tions of the nucleons in the nucleus, it is neces
sary to study the change of just these superfluous 
variables, so that a special investigation of the 
possibility of such in~estigations is needed. In the 
papers of TolhoekS and Coester6, which are devoted 
to a study of collective motions in nuclei on the 
basis of theN-body problem, the possibility of 
separating collective and internal motion is as-

sumed; however, the choice of the coordinates de
scribing the internal degrees of freedom remains 
unspecified. 

In the present paper we examine the question of 
distinguishing collective motions in a system con
sisting of N interacting particles. In the first sec
tion, using the example of a system consisting of 
three interacting spinless particles, we carry out 
an explicit separation of the collective degrees of 
freedom associated with the translational motion of 
the center of mass of the system and the rotation of 
the system. We give an expression for the square 
of the angular momentum of the whole system in 
terms of collective angular variables, and condi
tions are indicated under which the energy of the 
system can be represented as a sum of an internal 
energy and a rotational energy, determined by a 
moment of inertia which depends on the internal 
motion. The results obtained in the second section 
are applied to the case of a system consisting of 
one light and two heavy particles (hydrogen mole
cule ion). A system consisting of N particles is 
studied in the third section. 

1. SYSTEM CONSISTING OF THREE 

PARTICLES OF EQUAL MASS 

We consider three spinless particles of equal 
mass m, interacting with central forces of an arbi
trary type. Let r1 , r2 , r 3 be the radius vectors loca
ting the position of these particles in space. We 
go into the center of mass system (c.m.s.) xyz by 
introducing new coordinates according to: 

1/s (ri + r2 + r3) = R, - r1 + 1/2 (r2 + rs) = r, 

-r2+rs=p=2q/V3. (l.l) 

In the c.m.s. the kinetic energy operator 

T = Tq + Tr. Tq =- (tt2 /2!J.) t1q, (1.2) 

Tr =- ('li2 /2!1-) t1r 

is the sum of the kinetic energy operators of two 
equivalent particles of mass p. = 2m/3, which com
pletely describe the behavior of the system of three 
particles in the xyz coordinate system. Instead of 
the vectors q, r we introduce polar coordinates. 
Then 
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We introduce a new, moving coordinate system 
(t", TJ, 0 related to our particles in such a way that 
the t;;'-axis coincides with the direction of the vec

tor q, and the t", t;;'-plane coincides with the plane 
of the vectors r, q. In Fig. I 

f 
FIG. l. 

,. 

the direction of the z axis and the vectors q and r 
are indicated by the points z, q, r on the surface 
of a unit sphere. The broken line represents the in
tersection of this surface with the xz plane. The 
polar angles C{Jq and Oq of the vector q, and the 
angle ¢ between the planes going through the axes 
z, t;;' and t;;', t", completely determine the position of 
the system. In addition, let () be the angle between 
the vectors q and r. The angles cp, .&) ¢, () are de
termined by the angles CfJq• .&q¢,, &r with the help 
of the relations 

cp = <pq, .& = .&q, cos fJ = sin.& sin.& cos ((!) - (!) ) q r 'q 1 r 

sin fJ cos cp 

=cos .&q sin.&, cos (cp q- cp,) -cos S, sin .&q. 

The potential energy of the system as a function of 

the distances between the particles will depend 
only on the coordinates q, r, ()., which we shall call 
the internal coordinates 

V = V (V~2 + q2 j3 + 2qrcos fJ ;V3-, 2q JV3, 

(1.3) 

We shall call the angles q;.&¢ determining the orien
tation of the system t"TJ t;;' the external or collective 
coordinates. 

The operator corresponding to the total angular 
momentum of the entire system has the form 

1i.L =- i1i. ·{q x \!, + r x \!,}. (1.4) 

In the new variables we have for the operator cor
responding to the square of the angular momentum 
(1.4). 

t2[2 = -1i.2 {-.-1- _!.___(sin.& _i__) 
stn.a- a.a- a.a-

1 ( <}2 <}2 a2 )} + sin2 .a- aq;2 + 2 cos.& arparp + (Jrpi , (1.5) 

7iLz = - iho I ocp. (1.6) 

In going over to the variables r, q, (), &, q;, ¢,the 
H = T + V of the entire system is expressed by the 
equation 

(1.7) 

(1 1)[ 1 a(. a\ 1 a2] + (j2 + f2- sino ao· Sin fJ 7Jo) + sin2 o a¢2 ' 

(l.R) 

1i.2 {[sin rf> a a . a ] a 
7t = [Lq2 sin .j). ·arp - COS cp a.a- + cot .& Sin cp 7f1J -alf 

+ cot fJ [cot .& cos cp ~ + sin cp _a_ + c~s rh }!_] _ _E__} · a 'I' a.a- s w .a- arp arp • 
(1.9) 

the other operators involved in (I. 7) were defined 
earlier. 

It is easy to see that the operator corresponding 
to the square of the angular momentum (1.5) and its 
projection (1.6) commute with the complete Hamil
tonian of the system (1.7). Consequently, the quan
tities corresponding to them will be integrals of 
motion. The square of the total angular momentum 
operator and its projection have eigenvalues and 
eigenfunctions given by the equations 

( 1.10) 
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h c.. c.. 
LzDMx=MDMK• M,K=0,+1+ ... ±L, 

D e.. iMq>dl.. (") iK'l' MK = e MK v e , 

de.. (-9-) = y (- 1)" V(L + M)! (L- M)! (L + K)! (L- K)! 
MK £..J (L-K-x)!(L+M-x)!x! (x+M-K)! 

(l.ll) 

" 
x cos2T...+M-K-2" (~-} sin2~<+M-K ( _2}_). 

2 • \ 2 

The functions D~ K are the irreducible representa

tions of the three-dimensional rotation group, first 
introduced by Wigner7. They form a unitary matrix 
and satisfy the orthogonality relations 

7t 27t 27t 

\ \ \ c.. •z S7t2 " a a J sin -9-d-9- j d'f J d~D MK DmK' = 2L + i 0LI Mm KK'· 
0 0 0 

ForM = 0 or K = 0, the functions D~K reduce to 

the spherical functions 

D~0 =-. / 4rt YLM (rp, -9-), 
Jl 2L+1 

( 1.12) 

The stationary states of the system of three parti
cles are determined by the Schroedinger equation 

(H-E) 'f = 0. (1.13) 

Let us consider the states with definite values of 
the integrals of motion L and M. The wave func
tions of such a state can be represented in the 
form 

1 L _ ./2£+1 ~ L 
\jiM- r ~ .L.J DMK (rp, -9-, ~) ~K (r, q, 6). 

K (1.14) 

In particular !flo = % (r, q, fJ) for L = 0, i.e., the 
properties of the system in the s-state do not de
pend on its spatial orientation and are determined 
only by the internal coordinates r, q, fJ. The wave 
function cp0 (r, q, fJ) satisfies the equation 

+ (_1 + _ _!_) _1 _ _j_ (sin fJ a6-)J ( 1.15) q2 r2 sin 6 ()6 a 

-t-V-E}rp0 (r, q, fl)=O. 

We substitute (1.14) into (1.13), multiply the result 

by J(2L + l)/8a2 D~~. and integrate over the ex

ternal variables. Then we obtain the system of 
equations 

{2:;2 [L (L + 1)- K (K + 1)] +Z (K) -E} 
X'fx = ~ (K J7t I K') 'fx, ( 1.16) 

K' 

(1.18) 

The operator of internal motion (1.18) depends only 
on the absolute value of K. The diagonal elements 
of the matrix (1.17) are equal to zero. 

If we omit the right side of (1.16), we get the 
system of independent equations 

{(h2 J 2fLq2) [L (L + 1)- K (K + 1)] 

+ Z (K)- £} 'fx (r, q, 6) = 0. (1.19) 

The system of equations (1.19) will be a good ap
proximation to (1.16) if two conditions are met: 
a) the system of three particles has axial symmetry 
in the coordinate system fixed with respect to these 
particles, and b) the (axis of this coordinate sys
tem coincides with the axis of symmetry*. 

We shall assume that both these conditions are 
fulfilled. In this approximation the number K is a 
good quantum number; its value determines the pro
jection of the angular momentum on the (axis. For 
K = L, equation ( 1.19) goes over into the equation 

*The multiple-valued nature of the choice of the sys
tem .; , 7), ~ is important for the symmetry properties of the 
wave function, and will be considered in a subsequent pa
per, where systems of particles with spin will be studied. 
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[ 2 ( K) - s K ] cp ( r, q, fJ) = 0. (1.20) whole only about an axis perpendicular to the axis 
of symmetry of the system. 

Solving equation (1.20) we obtain a series of energy 
levels. We number these levels in order of increas
ing index a, which takes on the values 0, 1, 2, ... , 
and designate the corresponding wave functions by 

q:> aK· In particular, the wave function q:>oK corre
sponds to the lowest energy. 

We introduce the concept of the moment of iner
tia of the system in the state q:>ox with the help of 
the relation 

( l. 21) 

If the inequality 

fi2 I 2J oK < 81K- 8oK' ( l. 22) 

is fulfilled, then, according to (1.19), for a given 
value of K, the energy of the system corresponding 
to the state of lowest energy of internal motion can 
be represented approximately in the form of a sum 
of the internal energy £ox and the rotational energy 
with L > K. 

EoKL 
. (1.23) 

= COK + (ti2 f2JOK) {L (L + 1)- K (K + 1)}. 

If inequality (1.22) is not satisfied, a division of 
the energy into internal and rotational energy is im
possible. The representation of the energy in the 
form (1.23) is approximate. If we take further ap
proximations into consideration, we can find a rela
tion between the internal motion of the system of 
particles and the rotation of the system as a whole. 

Thus, in st.ates of a system of particles which 
exhibit an axis of symmetry coinciding with the t;; 
axis, the problem of determining the energy levels 
of the system of particles can be divided into two 
parts: first the energy levels of the system of par
ticles are determined by solving Eq. (1.20) for a 
given value of K, and then the motions of the en
tire system (rotation) are studied for a given state 
cp aK and different values of the total angular mo
mentum L > K of the system. The rotational angu
lar momentum is R = L- K. Since only values of 
L ~ K are possible in (1.23), the projection of the 
angular momentum on the axis of symmetry t;; must 
always be zero. In other words, a system of parti
cles with axial symmetry in a state of internal mo
tion described by the function CfiaK can rotate as a 

2. SYSTEM CONSISTING OF THREE PARTICLES 
OF DIFFERENT MASS 

The example just considered of a system of three 
particles of equal mass has only methodological 
interest, since in this case the states with the low
est internal energy do not have a sharply distin
guished axial symmetry. In order to deal with a 
system of three particles which satisfy the above
mentioned conditions.for the possibility of distin
guishing rotational energy, we study a system con
sisting of two particles of identical mass 
(m2 : m3 s m) and a third particle of considerably 
smaller mass m1 =am, where a"" 10- 3 • 

If the position of the particles is described by 
vectors r1 , r2 , r3 , then the transition to the center 
of mass system is effected by the coordinate trans
formation 

(2.1) 

In the c.m.s. the kinetic energy has the form 

T = - (7L2 I 2[L) (~q + ~,), (2.2) 
fL = 21Xm I (2 +IX). (2.3) 

Thus, all the results of the preceding section 
can be retained, if by q and p. we understand the 
quantities defined by (2.1) and (2.3). Since we are 
considering the case a « 1, we have approximately 

fL = IXm, p = q V21X. (2.4) 

Since both particles lie in the direction of the vec
tor q, this direction will coincide with the direction 
of the axis of symmetry of the system (for a« 1). 

For the case K "= 0, Eq. (1.20) has the form 

{ ~ f _1_ -~ (r2 ·_i_) + _2a ~ ( 2 ~·) 
- 2am L- r2 ar ar p2 ap P ap 

+ ( !~ + ;2-) si~ e -a~-(sin ° :e)] 
+V-Eo}9o(r, p, 0)=0, (2.5) 

V = V (p) + V (Vr 2 + (p2 I 4) + rp cos fJ) 

+ V (ll r2 + (p2 1 4)- rp cos&). (2.6) 
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in tenns of the variables r, p, (), 
Since the small coefficient a appears in the de

rivatives with respect to p, the solution of (2.6) 
can be accomplished in two steps. First we define 
the_ lowest energy of the system for fixed values of 
p (the adiabatic approximation), i.e., we solve the 
equation 

{ "Ji2 [ 1 a ( 2 a ) ( 2'1 1 ) 1 a 
- 2; rz ·a; r a, + -pi-+ r-J- sin e 00 

a (2.7) 
-(sin6 00)] -V-E0 (p)}f0 (r,6)=0. 

Solving (2.7) we obtain the energy as a function of 
the parameter p. Then setting 

Cflo (r, p, f1) = fo (r, &) u (p) I p, (2.8) 

and using (2. 7), we obtain from (2.5) an equation 
which detennines the function u(p). 

[- (1i2 1m) d2u 1 dp2 + £ 0 (p)- s] u (p) = 0. (2.9) 

If we designate by p0 the value of p for which 
E0(p) has a minimum, th,en, expanding E0(p) in pow
ers of the difference (p - p0 ) we obtain 

m(i)2 
Eo (p) =Eo + - 4- (p- Po)2 , 

m(i)2 _ 1 (a2E) 
-4- - 2 ap2 P=P: 

( 2.10) 

to within an accuracy of terms of the second order. 
Equation (2. 9) reduces to the equation of a one
dimensional hannonic oscillator. Therefore we can 
immediately write for the energy and eigenfunctions 

Srx = £ 0 + 1iw (rl + 112), 

Urx(P) = (mwl2t)'1•e-·'·'J2 H"(x), 

X = (p - p0) (mw I 21)'~>. 

We are interested in the case a "' 0, where 

(2.ll) 

Setting (2.8) in ( 1.20), and taking into considera
tion (2.4), we obtain 

i.e., we obtain the usual expression for the moment 
of inertia of two bodies of mass m, a distance Po 

apart, with respect to the axis which is the perpen
dicular bisector of the line joining them. 

3, SYSTEM OF N INTERACTING PARTICLES 

We consider a system of N identical particles of 
equal mass, interacting with central forces. Let 
r 1 , r2 , ... , rN be the radius vectors of these parti
cles. We go into the c.m.s. by introducing Jacobi 
coordinates 

1 
N(r1 + r2 + ... + rN) = R, 

1 
-r1+N_ 1 (r2+ra+ ... rN)=p1, (3.1) 

1 
-r2 + N- 2 (ra + r4+ ... +rN) = p2, ... , 

-r +r -
N-1 N- PN-1' 

The kinetic energy operator in the c.m.s. is 

N-1 
T = _ 1i2 ~ (N + 1- i) (N -1) !:1 (3.2) 

2[1. LJ N (N -i) Pi' 
i=1 

fL = (N- l)ml N. (3.3) 

For convenience we modify the length of the radius 
vectors in accordance with the following relations 

qi = pi [N' (N- i) I (N + 1 - i) (N- 1)]'1•, (3.4) 

Then the kinetic energy operator is 
N-1 

T = - ~ ,, !:1 · !:ii = <lq,·· (3.5) 21.1. LJ J> 
i=1 

We go over from the vectors q1 ,. ~ .... , qN-1 to po

lar coordinates q1,. 3-u cp. J •••J qN-1' 3-N-1' 'PN-1 
with respect to a center of mass coordinate system 
with a fixed direction of the polar axis. In these 
coordinates (3.5) has the fonn 

N-1 
T =- ;: ~ qi2 { :q. ( q~ a:.)+ L7}, (3.6) 

i=1 I I 

where the operator corresponding to the square of 
the angular momentum of the i'th particle is defined 
by the equation 

(3.7) 
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We introduce a new coordinate system ~ T], ,, 

associated with the system of particles in such a 
way that the plane fq coincides with the plane of 
the vectors q1 ,.lJ2, and the' axis lies along the 
vector ~. The position of this coordinate system 
is determined by the polar angles cp 1 , & 1 of the vec
tor q1 and the angle ¢ 2 between the planes Z' and 
'~. If cp 1 , & 1 , ¢ 2 are given, then the position of 
the vector lb is completely specified by the angle 

e2 between the vectors q1 and <J:z. The position of 

the remaining vectors ql' <J:z, ... qN_ 1 in the ~T]' 
system is determined by the angles ai = ¢i - ¢ 2 

fori ~ 3. In Fig. 2 the intersection of this plane 
with the plane xz is represented on the surface of 

a unit sphere by the dotted line. The points z, q1 , 

q2 , q3 characterize the position of the z axis and of 
the radius vectors q1 , <lz, q3 drawn from the center 
of the sphere. The arcs &1 , &2 , &3 correspond to 
the polar angles of these vectors with respect to 
the z axis. 

rl:. 

FIG. 2 

We go from the angles (jlp. &1, cp2 , ... N- 1 to the 
angles cp, &, ¢ 2 , e2 , ••• eN_ 1 with the help of the 
relations 

.& = .&1, cp = Cfil• cos oi =sin .&1 sin .&i cos (cp1- CfiJ) 

+ cos .&1 cos.& i> 

Sin &,sin¢i = sin.&isin(r.p1-r.p), 

(3.8) 
sin oi cos ¢1 =cos .&1 sin .&i cos (cp1- t.pj) 

The operator corresponding to the total angular mo
mentum of the entire system has the form 

N-1 

iLL=- ia ~ [qi vJ (3.9) 

i=I 

In the new variables (3.8) the projections of the to-

tal angular momentum (3.9) on the axes x, y, z have 
the form 

L .f . a a 
x = - l \ Stn t.p a& + COt & COS & (f~ 

N-1 
cos~ ", a } 

+sin&~ ---ar ' 
/-2 I 

L . { a " . a = - t cos~ -- -·- cot 1r !'In cp ---
" Y . a& a!? 

N-1 
sin f9 "' iJ } . 0 

- sin & £.J a"'1 ' L~-=- tFi · 
/-1 

We introduce the new notation ¢ = ¢ 2 and 
a 1 =¢j-¢2 , ifj~ 3, then 

(3.10) 

and the components L x• Ly of the total angular mo
mentum simplify to 

L . 1 . a a cos , lJ } 
x = - l l Slll tp a&· + COt & COS t.p CJ~- + sin & Of t 

L · { a 3 . a sin !? a } 
y = -l cos cpa&- cot smr.p a~-- sin& o<i . 

(3.11) 

The operator corresponding to the square of the to
tal angular momentum depends only on the external 
(collective) angles cp, &, ¢ 

1i,2[2 =- h2 {-.1-Y..- (sin.&-~-) 
sm!? a& . a.& 

(3.12) 

'+ si:2& [a!2 + 2cos.& a:;r/J + :r/J2]} 

and, of course, has the same form as the total angu
lar momentum operator (1.5) of the system of three 
particles. 

The potential energy of a system of N particles 
interacting with central forces depends only on the 
absolute values of the vectors qi and the cosines 
of the angles between them. The cosines of the 
angles between q1 and all the other vectors lJ2, ... 

qN-1 are cos(q1 q1)= cos ej. j ~ 2, respectively. 
The cosines of the angles between the other pairs 
of vectors are 

1\ 
cos (qiqi) =sin 61sin 01cos (¢J- ¢i) 

+cos0icos01, i.j~2. 
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Consequently, the potential energy depends on the 
3N- 6 internal variables !rjl = q 1,. q 2 , ••• qN-1· 

fJ2 ... ON -1• a3 ••• aN -1• and does not depend on the 
collective variables cp, &, cp. Therefore the opera

tor corresponding to the square of the total angular 

momentum of the system (3.12) and its projections 
on the Z axis commute with the total Hamiltonian 
of the system. 

In the new variables the kinetic energy operator 
of the system has the form 

(3.13) 

+ r· ara 
cot ~2 sm a.; iJ~ \~ 

N-1 

- .] a:-:-)]. 
J-3 I 

02 • ()2 J [ sin cb o iJ • iJ J iJ 
+cot&cos¢iJ1fJ2 +sm¢'J6a& +sin& aq;-cos¢·a&+cot&sm¢7f?iao2. 

The stationary states of the system of N parti
cles are determined by the Schroedinger equation 
(1.13). The wave function of the state with defi
nite values of the integrals of motion L and M can 
now be written in the form 

tfk = V21S~ 1 ~ D .JK (-ltcp ¢) 'fK ( {ri} ). (3.14) 
K 

Substituting (3.14) in (1.13), we obtain the system 
of equations 

where 

{ fl2 
-.-2 [L(L + 1)-K(K+ 1)1 

LfLQl 

(3.15) 
+ ZN (K)- E} 'fK = ~ (K i 't I K') 'fl<"• 

K' 
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is a matrix with vanishing non-diagonal elements; 

is the Hamiltonian operator of the "internal" motion. 
For systems such that K is a good quantum number, 
the right side of (3.15) can also be omitted here, 
and we obtain a system of independent equations 
for each value of K. For L = K equation (3.15) re
duces to 

(3.16) 

which determines the "internal" state of the system 
N interacting particles. Furthermore, we can carry 
out the same considerations as in Sec. 1, and ob
tain the moment of inertia of the system of N inter
acting parti des, corresponding to the internal state 

of motion Cfiox= 

[ 1 \ J-1 JoK= (:t ~ <fi:K q]_2 Cfct.Kd-r: · (3.17) 

The index a characterizes the quantum numbers 
which, together with K, determine the internal state 
of the system of N particles. If inequality (1.22) is 
satisfied, we can represent the energy approximate
ly in the form of a sum of the internal energy and 
the energy of rotation 

EoKL = EoK + h2 [L (L + 1) -- K (K + 1 )] / 2JoK. 

(3.18) 

The normalized wave function describing the rota
tion of the system has the form 

¢L (<D-&,.i,) = .. /'2L+1DL (<D-&r~,). 
MK•'f' JI~MK•'~' (3.19) 

ForK= 0, according to (1.12), this function reduces 
to the usual spherical function 

The complete wave function of a system with ener
gy (3.18) is the product of the function (3.19) of 
the collective degrees of freedom and the wav~ 
function (3.19) of the collective degrees of free
dom and the wave function cpax<lr;l) describing the 

internal motion in the system 

'¥tK:x = ¢ tK(cp ,& C/J) Cfct.K ( {r i}) · (3.20) 

The separation of the total energy of the system 
into rotational energy and internal energy, and the 
representation of the wave function in the form of a 
product of functions of internal and collective co
ordinates is possible only in systems with marked 
axial symmetry and where the inequality (1.22) is 
satisfied, i.e., in the case where the rotation takes 
place slowly enough so that it does not substan
tial! y change the internal structure of the system 
of N particles. As the frequency of rotation 

w =til o2K y L(L + 1)- K(K + 1) increases, the par
ticles will not be able to follow adiabatically the 
change of orientation of the mean field. Centrifugal 
and Coriolis forces will arise in the system, lead
ing to an interaction between the rotational motion 
and the internal motion of the particles. If the fre
quencies of rotation are small with respect to the 

frequency 18aK- 8a+l, K !11i, corresponding to 
transitions to excited states near Ka, then accord
ing to (3.17) each state of internal motion has its 
own moment of inertia. This conclusion does not 
agree with the remark by Coester6 that the moment 
of inertia does not depend on the internal wave 
function. In systems which deviate slightly from 
spherical symmetry, which were studied in the pa
pers of lnglis4 and Coester6 , the projection of the 
total angular momentum on the axis of symmetry is 
not conserved, and the representation of the wave 
function in the form of the simple product (3.21) is 
not justified. 
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