Mesonic Decay of a Tritium Hyperfragment

A. O. VAISENBERG AND V. A. SMIRNITSKII (Submitted to JETP editor December 14, 1956)
J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 736-737 (April, 1957)

An analysis is made of the mesonic decay of a hyperfragment according to the scheme ${}^{3}_{A_{0}}H^{*} \rightarrow p + p + n + \pi^{-} + Q$, where Q = 35.9 + 0.7 Mev.

I N THE SYSTEMATIC scanning of a stack of 30 Ilford G5 pellicles provided by Professor Powell, which had been exposed in Italy at 25 km for 8 hours during the autumn of 1955, we observed the mesonic decay of a tritium hyperfragment with the π^- -meson coming to rest in the emulsion. Since there are few known decays of this type which permit a relatively exact measurement of the Λ^0 particle binding energy¹⁻⁴ we wish to add this case to the available data.

A slow singly-charged particle hf is ejected from the primary $10 + 0_n$ star (see the projection drawing), is stopped in the same pellicle, and produces a secondary three-prong star. The range of hf is 360μ , its mass is greater than a proton mass as estimated either from the gap count and range or from the scattering and range (the second difference \overline{D} , as measured on the basis of $\overline{D} = 0.5 \mu$, is $0.23 \pm 0.10 \mu$). A single charge is found for hf from the gap count, range, and grain density.

The two short-range particles of the secondary

star (tracks 1 and 2) have identical ranges $12 \pm 0.6 \mu$. The charge which results from comparison of the grain densities of tracks 1 and 2 with the grain densities of α particle tracks from Be⁸ and ThC' decay gives z = 1. Track 3 belongs to a π^- -meson with 15,700 μ range. This π^- -meson passed through 8 pellicles and produced a one-prong σ star at the end of its range. The details of the measurements are given in the tables.

The combined momentum of particles 1, 2 and 3 is $91.2 \pm 1.2 \text{ Mev}/c$. If it is assumed that an equal and opposite momentum was borne off by a neutron we obtain the following decay scheme:

³H*
$$\rightarrow$$
 p + p + n + π^- + Q,

where $Q = 35.9 \pm 0.7$ Mev. Hence we obtain for the Λ° binding energy in tritium

$$B_{\Lambda 0} = -1.2 \pm 1.2$$
 Mev.

The most accurate values of B_{Λ^0} for similar ³H* $\rightarrow p + p + n + \pi^-$ decays are 1.4 ±0.6¹; 0.4 ±0.7²; 5.4 ±1³ and -3.0 ± 0.8^4 Mev.

Primary star	Associa- ted phe- nomena	Range, µ	Dip angle in unde- veloped emulsion	Proof of stopping		Mass meas- urement	Energy per nucle on in Mev
10 + 0 _n	Unob- served	360 <u>+</u> 5	10°40′	1) Scattering 2) Grain den- sity	1	$ > M_p (\alpha, R) > M_p (g, R) $	≈4.2 (if H ³)

TABLE I. Hyperfragment track

TABLE II. Secondary star

Track	Range, µ	Total experi- mental error	Strag- gling in %	Dip ⊐angle θ	Error $\Delta \theta$	Polar angle φ	$\frac{\mathbf{Error}}{\Delta \boldsymbol{\varphi}}$	Type of parti- cle	Measured mass	Energy in Mev
1 2 3	12 12 15700	$\begin{array}{c} \pm \ 0.6 \\ \pm \ 0.6 \\ \pm \ 500 \end{array}$	$ \begin{array}{c} \sim 2.5 \\ \sim 2.5 \\ \sim 2.4 \end{array} $	-15°20' +27° +17°40'	$\pm 30' \pm 40' \pm 6'$	214°30′ 55° 18°40′	$ \begin{array}{c} \pm 1^{\circ} \\ \pm 1^{\circ} \\ \pm 10' \end{array} $	ρ ρ π-		0.9 0.9 29,8±0.6

The decay scheme ${}^{4}\text{H}^{*} \rightarrow p + d + n + \pi^{-}$ cannot be entirely excluded. In this case the large negative values -4.7 ± 1.2 and -4.4 ± 1.2 Mev are obtained for $B_{\Lambda^{0}}$ depending upon whether track 1 or 2 is the deuteron. The decay ${}^{4}\text{H}^{*} \rightarrow p + p + n + n + \pi^{-}$ into 5 particles also cannot be excluded but possesses small probability.

In our reduction of the data we used values of constants taken from Shapiro's survey article⁵.

¹Haskin, Bouwen, Glasser and Schein, Phys. Rev. 102, 244 (1956).

² Fry, Schneps and Swami, Phys. Rev. 101, 1526 (1956)
³ H. Yagoda, Phys. Rev. 98, 153 (1955).

⁴ Anderson, Lawler and Negin, Nuovo Cimento 7, 605 (1955).

⁵ A. M. Shapiro, Revs. Modern Phys. 28, 2 (1956). Translated by I. Emin

171