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It is shown that the scattering amplitude for a potential with a diffuse boundary whose 
width is small compared with the wavelength of the incident particle can be expressed in 
terms of the phase shifts for scattering by a rectangular potential of a smaller radius and 
three numerical parameters which determine the shape of the potential. The parameters 
have been computed for potential {1) and the scattering amplitude has been determined. The 
problem of passage through a barrier whose width is small compared with the wavelength 
of the incident particle is also considered. 

I N THE OPTICAL MODEL of neutron scattering at 
low energies (up to 3 Mev) a rectangular-well po~ 

tential has been assumed 1. In actuality the potential 

clearly becomes zero in a, smooth fashion. The thick
ness of the diffuse boundary should be of the order 

of the range of the nuclear forces. In the considered 
range of energies the wavelength of the incident 
neutron is large compared with the surface thick
ness; its wavelength inside the nucleus is of the 
same order as the surface thickness. Under these 
circumstances the diffuse boundary can have an ap
preciable effect on the magnitude of the total cross 
section and on its dependence on the atomic weight. 
We shall use in the present work the smallness of the 
surface thickness compared with the wavelength of 
incident neutron. It will turn out that under these 
circumstances it is possible to neglect near the 
boundary the total and the "centrifugal" energies in 
the Schrodinger equation. This simplifies the prob
lem considerably and permits the scattering ampli
tude of a neutron of arbitrary momentum to be ex
pressed in terms of three numerical parameters which 

are determined solely by the shape of the potential 
in the boundary region. Furthermore, since the Schro
dinger equation in the region of the boundary is then 
the same as for an s-wave, it is possible to give 

exact solutions for a number of potentials, as for 
example 

(1) 

In this paper these numerical parameters will be cal
culated for a potential of the form (l). 

It is possible to treat in a completely analogous 
manner the passage of a particle through a barrier 
whose thickness is small compared to the wave
length of the incoming particle. Section 3 of this 
paper is devoted to that problem. 
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l. INFLUENCE OF THE DIFFUSENESS 
OF THE NUCLEAR BOUNDARY 

ON NEUTRON SCATTERING 

We shall write the Schrodinger equation for the 
wave-function, multiplied by r, for a neutron of giv
en momentum in the form 

d2uz (r)jdr 2 

+ [k2 - Vo (r) -- vl (r) -! (l + 1)/r2] Uz (r) = 0. 
(2) 

Here the complex potential V(r) (multiplied by 
2m/te) has been split into two parts: 

V0 (r)=0 for r>R 1 , 

Vdr)=O for r<R 1 , r>R2 • (3) 

We now consider (2) under the condition 

which expresses the smallness of the boundary 
thickness compared with the wavelength of the in
coming neu.lron. We now show that for R 1< r < R2 it 
is possible to neglect in (2) the terms P and 

l(l + l)/r 2 • The precision of this approximation 
corresponds to keeping all terms of order up to and 
including kM. We write (2) in the form 

r 

U 1 (r) = iz (kr)- hz ~kr) ~ jz (kr') V1 (r') Uz (r') dr' 
0 

(5) 
0 (k ) 00 

- ~ ~ hz (kr') Vl (r') Uz (r') dr'. 

for r > R1 

jz (x) = ii [hz (x) e2ioz- h;· (x)], 
• 

h ( ) w / 7tX (1) 
l X = r 2 Hz+·l· (x), 

(6) 
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where 8z is the complex scattering amplitude for 
the potential V0 (r). 

Because of (4) one can expand the functions jl 
and hz in the region R1 < r < R2 in powers of 
k(r - RJ and keep only the first two terms. Utiliz-

ing the identity 

we obtain for (5) 

r 

Uz (r) = p~l) + (r- Rl) F~2) + ~ (r- r') vl (r') Uz (r') dr', (7) 
0 

Fl1> = iz- ! izhz [~z + k<Dz"ffd; Fl2> = kxtFI1>, (8) 

iz = iz (kR1), hz = hz (kR1), <Dz = h;/ht; Xz = j;fjz, 

~I=~ vl (r) Uz (r) dr; 'l)l = ~ (r- Rl) vl (r) Uz (r) dr. (9) 

Because of the matching conditions j z{kR 1 ) is of 
the order k/k 1 (k 1 is the wave vector in the region 
r < R1), an anomalously small quantity. At the same 
time j 1z is of order unity. Therefore in the expan
sion of the products jz(kr)hz(kr') and iz(kr 1)hz(kr) 
terms of order j ;h; (k!1RJ2 have been kept. 

Differentiating (7) twice with respect tor one 
can convince oneself that with the employed preci
sion 

(10) 

It then follows that for R1 < r < R2 

( ll) 

where cpJr) and cp2 (r) are two linearly independent 
solutions of (10), satisfying the boundary condi
tions 

cp1 (R1) = 1, cp~ (R1) = 0; rp2 (R1) = 0, rp~ (R1) = 1. 
(12) 

Assuming cp 1(r) and cp2 (r) to be known one could 
obtain the scattering amplitude by matching (11) to 
the solutions in the regions r < R1 andr > R2 • In 
the usual matching procedure one needs u{(r). 
However the function uz(r) has been obtained only 
with a precision to k!1R, and in the process of dif
ferentiation the precision decreases by one order. 
We therefore use the following procedure. It follows 
from (7) that 

(13) 

It turns out therefore that uz(r) is expressed in the 
region R1 < r < R2 the standard functions and by 
the quantities ,;land rn which enter into Fp> and 

F~ 2 >. On the other hand, because of (9) ,; l and 1J l 

are given by uz(r) in the region R1 < r < R2 • Equa
tions for ,; l and 1J l are therefore obtained by insert
ing (ll) into (9); taking (13) and (8) into account 
one has 

~~ = (oc1 + rx2kxz) {iz- *- izhz [~z + k<DzYJzl}, 
(14) 

''ll = (~1 + ~2kxz) { j~ -- + /z hz [~t+k<DtiJzl}, 

:Y.1.2 = ~ v1 (r) 'P1.2 (r) dr; 

~1,2 = ~ (r- R1) V1 (r) 'P1.2 (r) dr. 
(15) 

The scattering amplitude (f3z- 1)/2ik can be given 
in terms of ,; l and 1J l by 

2ioz 2i \ . k ) V ( ) d ~~ = e - r Jlz ( r 1 (r) uz r r. (16) 

Expanding jz(kr) in powers of k(r-R) we obtain 

R 2io 1 2i . , 2 .-' 
f'l = e -- -k }t~z- t}z 'l)z. (17) 

Inserting (14) in (17) yields 

h·; kxz (1 +- ct2) + iX1- k(IJ; (1 ~ ~1- (:l2kXz) 

~~ = h;- kxz (1 + ,a2) + al- k<Dz[1- ~1- ~2kxzJ 
(18) 

This result can be written in the form 

(k;(l)3cp = 
kx 1 (1 + a2) + a1 

1 - ~1 - ~2kxz 

(19) 

Using the fact that cp 1
1 cp2 - cp 2

1cp 1 is a constant it 
is easy to show that the parameters a1, 2 and ,3 1, 2 
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satisfy the relationship 

(20) 

The scattering amplitude is thus given by the scat
tering phase shifts due to Vo(r) [see (8) anrl (6)] 
and three parameters which do not depend on k or l. 

2, SCATTERING FROM A POTENTIAL 

OF THE FORM ( 1}* 

Choosing R1 and R2 such that ea<R 1 - Rol and 

e a <Ro - R2l are negligible, Vo(r} can be considered 

to be a square well, and therefore 

kx.t =K'ft (K' R1), 

f!(x) = D(xh+·1,(x)]' !Vxlz:+•J.(x), (21) 

K' =VK~+ k2 • 

C!'., (r) = ---- ~ eiK,(r-R,) F i - " 1 r ( K 
'" 2i l a ' 

· Ko l-a , 

We now have to obtain a 1 2 and {31 2. From (15), (10) 
and (12) we find ' ' 

cx.l = cp~ (Rz); tx.2 = 7~ (R2) - 1, 

~1 = cp~ (R2) l:!.R- 71 (R2) + 1; 

~z = cp~ (R2) l:!.R- 9z(Rz). 

(22) 

With the considered potential V(r) one can solve 
Eq. (10) exactly2. In the ~ctual cases the imagi
nary part of the potential is smalP. One can there
fore neglect the absorption in the diffuse boundary. 
This means that one can consider the quantities 
K0 11R and K0 /a to be real. We shall assume this 
from now on. 

Neglecting terms of the order ea(R1 • Rolone ob
tains easily 

I + 2i ~0-,- e~(r-R,)) + c. c. }• 

(23) 

Here F(a, {3, y; z) is the hypergeometric series. Neglecting terms of the order ea<Ro- R 2 ) and utilizing the 

formulae 

F ( R "(' z) - r (y) r (~-a) F ((/. ex.+ 1 - ., ex.+ 1 - R· __!_) (- 7 )-"' ex., t'• I' -- l'(~)l'(y-a) ., 1' t'• z -

+ !:(~;;:(~=~~ F (~. ~ + 1--c, ~+l-ex.; !)(-z)-~, 
F( .. 1+2"··) f(1+2iy) ( )-iYj ( ) 

q,tj, q,z .--r(iy)l'(i+iy) -z n -z 

1'(1+ 2iy) [2' (1) •"(') •~>(1 +. )]( )-iY at 2--i>OO, + r (iy) r (1 + iy) 'f - i q - i q - z 
·~ (x) = r' (x) 1 r (x), 

we obtain from (23) for r "' R2 

yrr } + -nh COS (K0 (R 0 -· R1) + l:!.] , ta yr: 

* The author is grateful to L. D. Landau for pointing out 
the importance of investigating potentials of this form. 

(24) 
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We consider the first of these expressions. It is 
proportional to 

(25) 

The solution to the problem is obtained by insert
ing (24) into (22) and using (19). Before writing the 

final formulae we note that we have to neglect P 
compared to K~ since in the actual case K0 !1R "-' 1; 
in other words, we take K0 "'K 1 since we have al
ready neglected terms of the order (k!1R)2 compared 
to unity. 

[J/K' R1Jz+'i.(K' R1)J' cos !K' Ro + 11- K' R1l 

- lf K'R;Jz+'l• (K' R1) sin !K' Ro + 11- K' R1 J. 

The following expressions occur when substitu
ting (24), (22) and (21) into (19): 

fz(K' R1) cos !K'(R0 - R1) + 11] 

-sin [K' {R0 - R1) + Ll], 

The function y'XJ z +~ (x) has the form 

Cz(x)sin(x-7-)+Ct(x)cos(x-l;), 

fz (K' R1) sin !K' (R0 - R1) + il] 

+cos [K' (Ro- R1) + 11]. 

where C z(x) and Cz are of the order 1 for x > l. In 
the present case x=K'R 1 »kR 1 "-' l. Further, 

Here 

tVx J1 +'), (x)J' = c1 (x) cos (x -t;-: 1 2)- c1 (x) sin (x -t;: 1 2) 

+ c'l (x) sin (x- '"' 1 2) + c; (x) cos (x- h 1 2). 

c'l (x) ~ c; (x) ~ l 2 I x2 ~ l 2 (kRP (k I K')2 ~ k2 I K' 2 <s I, 

and they therefore can be neglected. Our expression therefore equals 

The second of the two expressions can be similarly evaluated. In this manner we obtain 

Taking into account 

we obtain by inse,.ting (26) into (19) 

~~ = ~: ~::~ ea~ 7T}'K'fl (x)- k <D~ (xl)] I e~""K'fz (x)- k<Dz (xi)]' 

x = K'R0 + Ll, X 1 = kR0 -kLliiX. 

(26) 

(27) 
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It has been shown in Ref. 1 that the optical 
model not only gives the scattering amplitude but 
also gives the ratio of the average value of the 
widths of the levels of the compound nucleus to 
the average level spacing. For our diffuse bound
ary potential this ratio is 

_I'_ = ._3__ Im {k I rtanh7tY cot (K' Ro + ~) .- ik]}. 
D 7t L 1tY (28) 

We note that if one assumes that y does not depend 
on A and is of order 1, then tanh 7T y /TTy ""' 14 and 
1 /D as a function of A has higher arid steeper res
onances than in the case of a rectangular well po
tential. 

3, TRANSMISSION COEFFICIENT FOR THE 
PENETRATION OF POTENTIAL BARRIERS 

AT LOW ENERGIES. 

The above problem of the influence of the dif
fuseness of the nuclear boundary on neutron scat
tering is formally very closely related to the pas
sage of particles through potential barriers whose 
thickness is considerably smaller than the wave
length of the incoming particle. We arrive at this 
problem by putting Vo{r) = 0, l = 0, and by dropping 
the boundary condition uz(O) = 0. This has the ef
fect that one has to replace iz(kr) andht(kr) in (5) 
by e -ikr and (i/2)e ikr respectively if the particle 
approaches from the direction of positive r. 

To obtain the transmission coefficients we con
sider (5) with the above substitutions. For r<R1 

we obtain 

u (r) = e- ikr [I t" 2~k ~ ei"'VI (r) dr J . (29) 

By definition, the transmission coefficient is given 
by 

Expanding eikr in powers of k(r-R 1 ) we have 

(31) 

where ~and 1f are quantities analogous to the quan
tities ~ z and 1f l· 

We now obtain ~and 7] up to the same precision 
and in a similar manner like in Section l. Inserting 
these into (31) we have 

The parameters a1, 2 and {31, 2 are obtained accord
ing to (15). 

The author wishes to express his deep gratitude 
to K. A. Ter-Martirosian for helpful suggestions in 
the course of this work. 
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