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e = p(a) (a(")> I (da I do)'= P ,..(a) 
Y Y' 0 0 Y" Y'' (6) 

where a y(a) is the polarization of particle a in the 

reaction b + Y -> a + X, when b and Y are unpolar­
ized. In the case of elastic scattering (a +X-> a+ X) 
equation (6) becomes the well known formula of 

Wolfenstein. 2 Note that Wolfenstein only proved 
his theorem for the case where inelastic scattering 
is absent (he assumed the scattering operator M 
was unitary). Our demonstration is free of this 
limitation. The third formula in (5) relates the po­

larization of particle Y in the reaction a + X -> 

b + Y to the correlated polarization in the reverse 
reaction. The remaining formulas in (5) need no 

special elucidation except for the formula of line 

four. The asterisk attached to the brackets < >, 
such as in <a(b) > *, denotes the fact that it de-

" " scribes thepolarization of particle b for the reac-

tion a + X -> b + Y wherein particle X was polar­
ized in the initial state while particle a was com­
pletely unpolarized. The index x attached to the 

bracket < >, refers here to the x-component of po­
larization of particle X. The rest of the formulas 
of line four may be interpreted in this way. 

In conclusion the author wishes to thank Ia. A. 
Smorodinskii for a discussion of the results. 

lJ, M. Blatt and V. Weisskopf, Theoretical Nuclear 

Physics, John Wiley and Sons, Inc., New York (1952). 

2 L. Wolfenstein and J. Ash kin, Phys. Rev. 85, 947 
(1952). 
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IN order to analyze the dependence of Cerenkov 
radiation upon the spin of the charged particles, 

we have utilized the method developed in Ref. l 
(see also Ref. 2)., which allows one to solve for the 
intensities of both linearly and circularly polarized 
radiation. 

When we consider linear polarization, we must 
resolve the amplitude of the vector potential of the 
quantized photon field into two mutually perpendic­

ular components in the following fashion: 

a = a2 +a~ = ~2Q2 + ~~Qa, • 
(l) 

~2 = ('X,OkO] I v 1- ('X,OkO), ~3 = ('X,0.32l· 

x 0 = x/K. is a unit vector which characterizes the 
motion of the photon and the unit vector k 0 must be 
assigned some definite direction On our problem, we 
shall assume that the vector k0 is in the direction 
of the electron motion, i.e., along the z-axis). 

In the case of circular polarization the vector 
potential is resolved into two different components: 

a= a1 + a .. J = ~1Q1 + ~-JQ-J, 

V2~1. = ~ 2 + i"A;33 , "A= 1, -1. 
(2) 

The quantized part of the vector potential appearing 
in Eq. (l) and (2) must satisfy the relations 

qt qi = o, qiqt = aii" j. i' = 2. 3, 1, -1. 

In contructing the quantized transverse electro­

magnetic field in a medium of refractive index 

n(n=y'8,p.=l) (cf. Refs. 3 and 4, where the quan­
tum theory of the Cerenkov effect is developed), we 
find that the vector potential A is related to the 

quantized amplitudes a (cf. Ref. l or 2) through the 
following expression 

A L-'i, "" v21tcti ( { . . = LJ -- a cxp -tc (xt 1 n) + t'ltr} nx 
)( 

+a+ cxp {iqxt In- ixr}). 

We shall choose to write the wave function for a 
free electron in the form 

~ = 1.-•f, ~C'b' exp {- ic K't + ik' r}, 

k' 

where 1ik is the momentum of the electron, 

(3) 

(4) 

c"hK=cn vP+ k~ the electron energy and nk0 /c its 
mass. We shall denote the initial state of the elec­
tron by an unprimed symbol and its final state by a 
primed symbol 

Introducing the perturbation energy U = (e/ c)(aA), 
we must consider the coefficients C' as time-depend­
ent, satisfying the initial condition: 

C'=C<k; o) = ok' k' 

When solving the Dirac equation (i.e., including 
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electron spin), the ljl-function (4) is given by a four­

row matrix. When solving the Klein-Gordon Equation 
(i.e., for spinless particles), we must limit ourselves 

to two wave functions assuming 

b1 = (2c!K)-' 1•, b2 = (c!K; 2)'1•. (5) 

In that case the expression for the density becomes 
P = \jli \j/2 + \jl~ \j/1• One then finds the following ex­
pression for the radiation intensity per unit legth of 
electron motion: 

w<s)=~w_ij __ ~C'+C'=~(~I)(K- !: .. -K') 
(j) v at k' 27! J nv n 

R(s)+ R(s) sin 6d6dcpx2dx R(s) = b'+ (a(s) a+) IJ, (6) 
(j) (j) , (J) ( J) 

where v is the electron velocity. The index s(s = ~;;;; 
s (s =~, 0) denotes here the spin of the particle, 
j( j =2, 3, + 1, -D denotes the polarization of the 
radiated photons, and e is the angle between the 

initial momentum of the electron and that of the ra­

diated photon. 
The expression for cos e may be obtained, as 

usual, from conservation of energy and momentum 
(cf. Ref. 3 and 4): 

cos e = ( l 1 ;In) + (nw! 1 2cp) (1 - n- 2 ). (7) 

Taking into account the dependence of n upon the 
frequency w and the fact that n tends to unity for 
large values of w, radiation is possible if f3 n (w)> 1, 
and is cut off at a frequency W=W for which 

max 
cos e= 1. 

When solving the Dirac equation, we must replace 
the a<s) by the well-known Dirac matrices (a00== a), 

while in the case of zero-spin particles we must set 
ba(O)=bk/K and b'a0 ==b'k/K. The radiation due to 

zero-spin particles (s =0), and that due to particles 
possessing spin, is thus found to be: 

wmax 

w<o>~~ \ w 
(f) v j 

(ka(j))(k'a(iJ) 

nKK' 
I) (K --~- K' J sin @ d6 xdx, 

ll ' 
0 

w<'l•) = _ _1?2_ "'rx w [ (ka(j)) (k'a(j)) + _1_ (1 -- k~ + (kk')) (a . a-+:)] 
U> v j nKK' 2 . KK' (Jl <J> 

(8) 

0 

In order to take polarization into account, we 
must apply formulas (10)- (12) of Ref. 1 to elimin­
ate the quantized amplitudes of the vector poten­
tial. The intensity of radiation emitted per unit 
length of a zero-spin particle is then found to be 

wmax 

w<o) = 0, w<o) = ~ \ w (1 - cos2 6) dw, (9) 
(2) (3) c2 j 

0 

i.e., the radiation will be strongly linearly polarized 
over the whole range of frequency w, and the po­
larization vector (the electric intensity vector for 
the radiated photons) must be in the plane (x.k). 

In the case of radiation due to particles of spin 
one half, we find 

wmax 

w<•l,) = ~ \ w n2w21! 2 (1- _!_) dw, (10) 
(~) cz j 4c2 p2 n2 

0 

w<'la) = 'f'V(O) + w<'l,). W('/,) = w<'l•>. ( 11) 
(3) (3) (2) I (-1) (1) 

Thus it may be seen that in the classical approxi­
mation ( n-+ 0), the radiation will be completely 
linearly polarized just as in the case of zero-spin 
particles. 

The presence of spin leads to an additional un­
polarized radiation which does not disappear at the 

radiation threshold ( E ==E 0). The linearly polarized 
part of the radiation is missing at threshold, but it 
grows in proportion to (E- E 0 ) as the electron 
energy E ( (E- E 0)/ E 0 « l) grows: 

wmax 

w<o> = 2 _e_2__ E- Eo \ wn2dw. (12) 
(3) c2 mc2 j 

0 

Harding and Ilenderson5 state in a brief note that 
they have observed non-polarized Cerenkov radiation 
near threshold. However, in view of the small inten­
sity of the unpolarized part of the radiation, propor­
tional to 1i 2 , it is difficult to believe that these ob­
servations are somehow tied up with spin effects. 
Still, it should be noted that, due to the wide use 
use of light counters, experimental technique has 

reached such a degree of accuracy that it has be­
come possible to observe Cerenkov effects due to 
single particles. 6 

1 A. A. Sokolov and I. M. Termov, J, Exptl. Theoret. 

Phys. (U.S.S.R.) 31, 473 (1956); Soviet Phys. JETP 4, 

396 (1957). 
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2 A. A. Sokolov and A. I. Mukhtarov, Vestn. Moscow 

State Univ. 8, 63 (1948). 
3 A. A. Sokolov, Dokl. Akad. Nauk SSSR 28, 415 (1950); 

see also A. A. Sokolov and D. D. Ivanenko, The Quantum 

Theory of Fields, Moscow-Lenningrad (1952) p. 222. 
4 V. L. Ginzburg. J. Exptl. Theoret. Phys. (U.S.S.R.) 

10, 589 (1940). 

5 ]. M. Harding and J. E. Henderson, Phys. Rev. 74, 

1560 (1948). 
6 I. M. Frank, Izv. Fyz. N auk 58, Ill (1956). 
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