<sup>1</sup>E. K. Zavoiskii, Dissertation, Physical Institute, Academy of Sciences, U.S.S.R., Moscow, 1944.

<sup>2</sup>I. G. Shaposhnikov, Dissertation, Molotov State University, 1949.

<sup>3</sup> F. W. DeVrijer and C. G. Gorter, Physica 14, 617 (1949).

<sup>4</sup> F. W. Vrijer and C. G. Gorter, Physica 18, 549 (1952). <sup>5</sup> Smits, Derkson, Verstelle and Gorter, Physica 22, 773 (1956).

Translated by I. Emin 148

## Electric Monopole Transitions in Nuclei with Odd Mass Numbers

L. K. PEKER AND L. A. SLIV (Submitted to JETP editor December 17, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 621-622 (March, 1957)

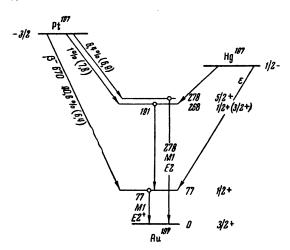
THE non-radiative wholly converted electric monopole E0 transitions between two spin zero levels  $(0+ \rightarrow 0+)$  have been studied well enough only in three cases (see Table 1). However, E0 transitions can take place not only between 0-0 levels, but between any two levels with same spin and parity, because in this case the selection rules are satisfied  $(\Delta I = 0, no)$ . The matrix element for an E0-transition has the form

$$H_{if} = \langle f \left| \sum_{p} r_{p}^{2} \right| i \rangle = \rho R_{0}^{2}, \qquad (1)$$

where  $R_0$  is the nuclear radius and  $\rho$  a parameter, which is of the order of unity in the case of a complete overlapping of the initial and final state wave functions. The monopole transitions, more than the others, depend on the structure of the nucleus; their study can therefore give additional information on nuclear models.

An attempt has recently been made<sup>2</sup> to observe E0-transitions between two levels  $2 \rightarrow 2$  in eveneven nuclei. If one measures the internal conversion coefficient (ICC) for the K-shell,  $a_k$  and, by an independent method (e.g., from angular correlation), determines the contribution to the radiation of M1 and E2-transitions, then

$$\alpha_{h} = T_{e} / T_{\gamma} = \varkappa \alpha_{2} + (1 + \varkappa) \beta_{1} + T_{e0} / T_{\gamma}.$$
 (2)


 $\alpha_2$  and  $\beta_1$  are the theoretical ICC's for E2 and M1transitions respectively,  $\kappa$  is the contribution of E2 transition,  $T_{\gamma}$  is the probability of  $\gamma$ -transition equal to  $T_{\gamma}(M1) + T_{\gamma}(E2)$  and  $T_e$  is the conversion probability. The third term  $T_{e0}/T_{\gamma}$  determines the part of the electrons involved in the monopole transition.

It follows from the experimental values of the ICC for the  $2+ \rightarrow 2+$  transitions in  $Pt^{192}$ ,  $Pt^{196}$  and Hg<sup>198</sup> nuclei, that the part  $T_{e0}/T_{\gamma}$  is very small and lies within the limits of the experimental errors; theoretical considerations<sup>2</sup> indicate that this part should be of the order of unity. Such a result has been understood after it has been determined that the spin 2 levels in the considered nuclei have a vibrational character, and that the transitions between them involve a change by unity of the vibrational quantum number  $\nu$ . This strongly forbids E0transitions and reduces their probability by a factor of about 100. The investigation of E0-transitions between levels of other type is made difficult by the necessity of independent measurements of the ICC and of the percentage of E2 (or M1) transitions, which is a very difficult experimental problem at the present time.

The purpose of the present note is to point out the existence of E0-transitions between spin  $\frac{1}{2}$ levels  $(\frac{1}{2} \pm \rightarrow \frac{1}{2} \pm)$  in odd A nuclei. In this case, the spin selection rules rule out the possibility of E2-transitions ( $\kappa = 0$ ) and Eq. (2) becomes:

$$T_{e0} / T_{\gamma} = \alpha_k - \beta_1. \tag{3}$$

This simplifies the experimental method a great deal, because it suffices to measure only the ICC  $a_{K'}$ .



The best investigated is the level scheme of Au <sup>197</sup> (see Figure). The latest measurement<sup>3</sup> of the ICC for the 191 kev transition gave the value  $a_{\kappa} = 2.5$ . If the transition was a pure *M*1, then  $a_{\kappa} = 1.0$ ; with a mixture of *E*2, the ICC would be still smaller. The possibility of a higher spin contradicts the  $\beta$ -decay character. It remains therefore to assume that the spin of the 268 kev level is  $\frac{1}{2}$  and that the 191 kev transition is a mixture M1 + E0. Evaluating  $T_{\gamma}$  for an *M*1-radiation by Moszkowski's formula<sup>4</sup>, we obtain from (3)  $T_{e0} \approx 4.10^{11} \text{ sec}^{-1}$ . The corresponding value of  $\rho$  is  $\rho \approx 0.5$ , which is in agreement with the value of  $\rho$  obtained from  $0+ \rightarrow 0+$  transitions. The table gives a compilation of the data on *E*0-transitions.

It seems of interest to determine the contribution of E0-transitions to the conversion spectra of other nuclei, e.g.  $In^{115}$  and  $Hg^{199}$ ; there are indications<sup>5</sup> that these nuclei have two spin  $\frac{1}{2}$  levels with same parity. One would also like to confirm the results of Potnis et al.<sup>3</sup>, which we used here.

| Nu-                                                                                                                                      | Type of                                                                    |                                                                                              | E                                                              | ρ                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| cleus                                                                                                                                    | E0-transition                                                              |                                                                                              | (Mev)                                                          |                                                                                                                                  |
| C12<br>O16<br>Ge <sup>7</sup> 2<br>PO <sup>214</sup><br>Au <sup>197</sup><br>Pt <sup>192</sup><br>Pt <sup>196</sup><br>Hg <sup>198</sup> | $\begin{array}{c} 0+\\ 0+\\ 0+\\ 0+\\ 1/2+\\ 2+\\ 2+\\ 2+\\ 2-\end{array}$ | $ \begin{array}{c} 0+\\ 0+\\ 0+\\ 0+\\ 1/2+\\ 2+\\ 2+\\ 2+\\ 2+\\ 2+\\ 2+\\ 2+\\ 2+\\ 2+\\ $ | •7,68<br>6,06<br>0,69<br>1,42<br>0,191<br>0,30<br>0,33<br>0,68 | $\begin{vmatrix} 1/2 \\ 1/2 \\ 1/9 \\ \sim 1/20 \\ \sim 1/2 \\ \leqslant 1/45 \\ \leqslant 1/34 \\ \leqslant 1/14 \end{vmatrix}$ |

<sup>1</sup> J. Blatt and V. Weisskopf, *Theoretical nuclear* physics.

<sup>2</sup> E. L. Church and J. Weneser, Phys. Rev. **103**, 1035 (1956); **100**, 943 (1955).

<sup>3</sup> Potnis, Mandeville and Burlew, Phys. Rev. 101, 753 (1956).

<sup>4</sup>S. A. Moszkowski, *Beta and Gamma-Ray Spectroscopy*, Chapter 13.

<sup>5</sup> B. S. Dzhelepov and L. K. Peker, *Decay Schemes of Radioactive Isotopes*, (Academy of Sciences Press (1957).

Translated by E. S. Troubetzkoy 149

## Internal Conversion Coefficient of the 53 kev Gamma-Radiation on the L shell of Th<sup>230</sup>

A. A. VOROB'EV, V. A. KOROLEV, A. P. KOMAR AND D. M. SELIVERSTON

Leningrad Physico-Technical Institute, Academy of Sciences, USSR (Submitted to JETP editor December 17, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) **32**, 623 (March, 1957)

The energy of the first excited state of Th<sup>230</sup> is now determined to be of 52.5 kev<sup>1</sup>. From the data available in the literature, it can be concluded that the conversion coefficient of the 53 kev  $\gamma$ -radiation is large<sup>2</sup>.

For the measurement of the conversion coefficient we have used the  $\alpha$ - $\gamma$  coincidence method. An enriched source of U<sup>234</sup> was used. The  $\alpha$ -particles were recorded by an impulse ionization chamber,

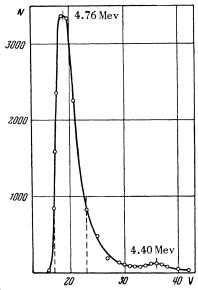



FIG. 1. The volts (V) show the discriminator level.

(the  $\alpha$ -spectrum is shown on Fig. 1) the y-quanta by a scintillation counter with an NaI(TI) crystal. The y-spectrum was photographed when in coincidence with the  $\alpha$ -particles, which gave an impulse on the output of the multiplier in the interval 17 to 23 volts (Fig. 1), *i.e.*, when in coincidence with the  $\alpha$ -particles going to the ground and first excited states of Th<sup>230</sup>. On Fig. 2, the thin line shows the y-spectrum photographed without absorption. As it can be seen, the main contribution to the spectrum comes from a 15 kev x-ray. Controlling experiments have shown that this radiation can