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The following cases of interaction of several fields are considered: 1) N fermion and n 
boson fields with the same coupling constant, 2) two fermion and two boson fields, inter­
acting with different constants, 3) fermion and boson fields with different isotopic proper­
ties. In all cases considered the physical charge tends to zero as the extended interaction 
approaches a point one. 

JN articles by Pomeranchuk 1 it has been shown 
that in pseudoscalar meson theory the inter­

action constant tends to zero as the transition from 
an extended interaction to the limit of a point one 
is carried out. It was assumed that the result does 
not depend upon the particular way of carrying out 
the limiting procedure, and therefore a special form 
proposed by Abrikosov and Khalatnikov 2 was em­
ployed. 

In the several examples, we consider this con­
clusion is not changed by the introduction of several 
interacting fields. 

1. As a first example we consider N fermion fields 

(all with isotopic spin Y:i) and n boson fields (all sca­

lar or pseudoscalar with isotopic spin l) interacting 

with each other with the same coupling constant g. 
"e do not introduce any selection rules, so that 
all types of fermions can transform into· each other, 
as can all types of bosons (the pFoblem presents 
itself as a purely methodological one and the rela­
tion of the fields introduced to real particles is not 
considered). 

It is necessary to take into account the fact that 
virtual bosons (or fermions) can be transformed 
from one type into another. Therefore the Green's 

function of the bosons Dab is a matrix, in which the 
indices a and b can take on n values. The diagonal 

elements D aa correspond to the propagation of a 
boson of type a without transformation, and the non­
diagonal elements Dab to the preparation of a boson 
of type a with transformation into one of type b. 

Neglecting the mass of the bosons, we express 

In view of the fact that all bosons are equivalent 
(have the same charge, differences in mass being 
unimportant in the study of the asymptotic Green's 
function), all diagonal elements dab are equal 

(d ""' d1), as well as all non-diagonal elements a a 
(dab""' d2 , a .J b). The matrix dab is connected with 
the polarization operator in the following way 
(P is the polarization operator, divided by k2 ): 

(l) 

From the equivalence of all bosons it follows that 
all elements of Pab are equal (Pab = P). Then Eq. 
(l) gives 

from which 

'l + (n- 'l) p 
dl = 1 + nP 

p 
d2 =- 1 +nP (2) 

We consider now a given boson line of a given 
diagram. To each such line there will correspond a 
factor 

(n cases of propagation of a boson without trans­
formation, n (n - l) with transformation). From Eq. 
(2) follows 

~ = 1 j (l + nP). (3) 

Analogously, for each fermion line it is necessary 
to write 

where {31 corresponds to propagation of a fermion 
without transformation, and {3 2 , with transformation 

460 



ON THE POSSIBILITY 0 F FORMULATING A MESON THEORY 461 

(the fermion Green's function G is, for large 
momenta, equal to G"' (3/p). Analogous to Eq. (3) 
we have (5) 

B=l/(l+NM), (4) Looking at the equations for the vertex parts we 

where M is the mass operator (divided by p). 
We note that ~ and B satisfy the same initial con­

ditions as d and (3 in the theory with one boson and 
fermion, that is ~(L) "'B (L) "' l, where L is the 
momentum at which the interaction is cut off. In 
fact, when their interaction is excluded, the par­
ticles cannot undergo mutual transformations and 
therefore d2 (L) ""{32(L) "'0. 

Now if we turn our attention to the fact that the 
polarization operator arises from two fermion lines, 
the mass operator from one fermion and one boson 
line, and the vertex part from two fermion lines and 
one boson line, and take into account that all pos­
sible transitions of one fermion and boson into an­
other are allowed, then it is immediately obvious 
that the equations for the Green's function and ver­
tex parts in our case can be obtained from the cor­
responding equations of the theory with one boson 
and fermion, using the simple substitutions 

From this it follows that all conclusions which 
are valid for the theory with one boson and one nu­
cleon can be automatically carried over to the case 
of many interacting fields considered. 

2. Now we consider the case of different (in mag­
nitude or in sign) charges. The general form of the 
interaction Lagrangian is as follows: 

By using a linear transformation of the fields t/h 

it is possible to bring the quadratic form ~a 'k zlfi. t/Jk 
ik I ' I 

into diagonal form, leaving the Lagrangian of the 
free fermion field unchanged. 

Then 

:£ =] ai.l ~i~iCfl· 
il 

The further transformation of the Lagrangian 
using the substitution cl>. =~a. 1 cp l leads- in so 

I i 11 

far as this transformation is not, in general, orthog­
onal- to complicated free equations for the boson 
fields and does not simplify the problem. 

We consider the following Lagrangian-

see that it is sufficient to introduce two vertex 
parts 

f tiJ,.J;,cp, = f <:;,t1J,92 - f1; f .J;2.J;2cp, = f <!Jz<!lz'~'• == f z· 

From these equalities it follows that the polariza­
tion operator (and also the boson Green's function) 

are symmetrical: Pik = Pki. From the equality 

(6) 

we obtain 

du=(l +Pzz)~~1 ; dzz=(l +Pu)~~-1 ; (7) 

d12 =- pl2~-;-l, 

where 

(9) 

Symbolically, the equation for [', has the follow­
ing form (we always consider the problem in the 
same approximation as in Ref. 3): 

where G1 is the Green's function for the field t/11• 
Just as in the theory with a single field, we obtain 
for high momenta: [The case where the boson field 
has isotopic spin l is considered; the arguments of 
all functions are g = ln(-p2/m2). The prime indi­
cates differentiation with respect to g.] 

1'.1.~/1'.1.1=-). 1 ; rx;jrx2 =-1.2 ; (ll) 

1.1 = (l'.l.i~U 47t) (gi1du + gi2d22 + 2g11g12d12), 

1.2 = (1'.1.~~~ I 4o.) (gi1dn + g~2d22 + 2g22gz1d12). (12) 

For the fermion Green's function we have (the cal­
culation is completely analogous to the theory with 
a single field 4): 

~~~~1 = 3),1/2; ~~~~2 = 31.2/2. (13) 

The polarization operator E£. satisfies equations 
which can be written symbolic'ally 
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2 

k2P;i = ~ g;igii GrfrGr. 
1=1 

From this we obtain* 

I 1 2 B2 2 + 2 2R2) Pn = -- (gn, 1IX1 g21IX2r2 • 
7t 

P1 1 ( 2 2r 2 2 2 2 22 = --7 gl21Xl~l + g221X2~~). 
p;2 =- ~ (gllg121Xi~i + g22g211X~~~). 

Using Eqs. (7)- (9), it is easy to show that 

From (12) we obtain 

or, using Eqs. (11), (13), (7)-(9), we have 

(14) 

(15) 

(16) 

(17) 

The quantities A1 and A2 characterize the effec­
tive interaction of two fermions 1/11o 1/11 or 1/12, 1/;2· In 
addition, the interaction of 1/11 and 1/12 can be con­
sidered. We denote by >.., the corresponding effec­
tive charge 

'·3 = (1XIIX2~1~2 I 47t) [gllg2ldll + gl2g22d22 (18) 

+ (gllg22 + gl2g2l)di2l· 

It is easy to verify that 

*We do not give the calculation in so far as it coin­
cides completely with that in Ref, 4. The only question 
arising concerns "small additions" to the vertex part. 
One can verify directly that, just as in the theory with a 
single field, their contribution is two powers of a higher 
in the expressions for /3 1 and P/j' 

and therefore Eq. ( 17) can be written as 

(19) 

and analogously 

t..; I A2 = 51.2 + 4/.~ / ),z, ),; / ),3 = 9 (1.1 + ),z) / 2 · 

( 19') 

We note that although four constants occur in the 
Lagrangian (5), only three combinations of these 
constants have physical meaning, as one can show 
by making the substitutions 

v gil+ gi2 <1>1 = gllcpl + g12'f2• 

V g~2 + g~l <Pz = g21cp1 + g22'f2· 

Also, effective charges >..i correspond to these 
three combinations of constants. 

From Eq. (19) it is seen that all derivatives of 
>...are positive, i.e., >...decreases with decreasing 

£ ! 

momentum. 
Following Abrikos..,v and Khalatnikov,2 we intro­

duce two limiting momenta: Ak for the integration 
over virtual bosons, and Ap for the integration over 
virtual fermions, with L - L k = ln Ap/ Ak » l. 
The Eqs. (19) are valid for ,; < L k and the values of 
A .(L k) are initial conditions for them. Just as in 
the theory with a single field, for sufficiently large 

L - Lk the values of >..i(Lk) must be small. 
Pin fact, following Ref. 2, we obtain from the 

equations for the polarization operator the follow­
ing boundary conditions for Pij at ,; = L k: 

P 11 = ~ (gil+g~I)(Lp-L~t), 
" P22= + (gi2 + g~z) (Lp- L"), 
1 

P12= -- (gllglz + g2zg21) (Lp- Lh)· 
7t 

From this we have, for example, for \(Lk): 

from which it is clear, for sufficiently large L p - L k, 
that indeed A1(L k) « l. 

If >...(Lk) « 1, then Eqs. (19) are exact in so far 
! l 

as the more complicated vertex parts play no role. 
In order that the physical charge (i.e., the solution 
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of Eqs. (19) for small momenta) tends to zero as 
L k -> oo, it is sufficient in these conditions that the 
right-hand sides of Eqs. ( 19) are positive. We see 
that this condition is fulfilled. 

Thus, the conclusion about the physical charge 
being zero still holds in the case considered. 

3. We consider now a mixture of fields with dif­
ferent isotopic spins. The most characteristic pecu­
liarities of this mixture of fields will be made clear 
by an example of four interacting fields: the tjJ 
field, which is a spinor in ordinary space and a 
spinor in isotopic space; the Yi field, which is a 
spinor in ordinary space and a vector in isotopic 
space; the cp i field, pseudoscalar in ordinary space 
and vector in isotopic space; the e field, scalar in 
ordinary space (it can also be taken as pseudo­
scalar) and spinor in isotopic space. 
_ The interaction Lagrangian has the form Cif; = (3tjJ~ 
Y = (3Y*, f.ijk is the completely antisymmetrical 
tensor): 

()(~I 0(1 :=- '·1- 21.3 V'·2/l.1; 
()(~ 1 0(2 = '·2- 21.3 v1.11 1.2; 

()(~ 1 0(3 = 3/.3 - 2 v~. (24) 

The negative sign of the second terms in the equa­
tions for a comes from the choice of sign for the 
charges gl and g2 (if e is the pseudoscalar field, 
then the equations have the filame form under a dif­
ferent choice of the relative sign of g1 and g2). 

+ 

~= C./ +~ 

~ ----·0--- + --©---· 

(20) Po-~ 

We denote the Green's functions of the fields tjf, Y, 
cp and e as follows: 

G<!J=~1/P; Gr=~2IP; D~=di!k2 , D0 =d2 lk2 • 

(21) 

It is necessary to consider three vertex parts 

f<\IY'+'i = '"=jj5ot1 ; fr; rh~l = ieild'(5ot2 ; f<~;v/J = '=iot3 . 

'(22) 

The equations for the mass and polarization oper­
ators and the vertex parts are shown schematically 
on the figure. 

The structure of the equations for a, (3 and d do 
not differ at all from the theory with one pseudo­
scalar. If we introduce the following three effective 
charges 

Al = (gU 4r:) oti~idl; (23) 

i,2 = (g~ I 47t) ot~~~dl; 

then the equations for the functions ai, (3 i' di have 
the form 

~=A+A +A 
{~~ =i\.+ ~ + A 
~·=A/A+ A 

Schematical description of the equations for mass and 
charge operators and vertex parts. Conventions: - .p 
field, ---- cp field, -~-v 8 field, = Y field, 

Employing Eqs. (23) and (24), we obtain the fol­
lowing equations for the effective charges 

1.~ 1 '·1 = 51.1 + 41.2 + 31.3 - 4i.3 vr '·2 I '·1, 

i.~; '·2 = 4i.1 + si-.~ + 2i.3- 4).3 v'·l 1 1.2, (25) 

1.~ 1 1. 3 = 3).1 1 2 + /, 2 "+- 29i.3 1 2 - 4 y·/~).;. 

Again using two limiting momenta, it is possible 
to show that the initial conditions for the system of 
equations (25) are >../Lk) « l. To guarantee the 
validity of this conclusion, it is only necessary 
that the d;/di in Eqs. (24) are positive. 
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From Eqs. (25) it can be seen that if A1, .\ 2 and 
A3 are of the same order, then all derivatives ,\~, 
/-.'2, and ,\~ are positive and all charges \ decrease 
with diminishing momentum. If initial values of \ 
of different order are given at the limiting momenta 

Ak, for example, A1(Lk) ».\iLk); ,\3(Lk)- A1(Lk)' 
then as the momentum decreases, A2 will grow and 
A1 will diminish. Therefore, the point will come 
where the derivative of .\2 changes sign and ,\2 also 
starts to decrease. Finally, if A1 (L k) and A2 (L k) 
are of the same order and AJ(L k) is large, then A1 
and A2 grow and A3 diminishes (with decreasing 
momentum). Therefore, the growth of A1 and A2 
will become slower, and finally all three charges 
will decrease. 

From this it is clear that qualitatively the situa­
tion does not differ from the theory with one pseudo­
scalar field, i.e., all charges tend to zero with un­
limited increase of L k' 

4. In all cases considered, the physical charge was 
equal to zero after the limiting momentum tended 
to infinity. For this two characteristics are impor­
tant: (l) the positive sign of the derivative d '/ d, 
which leads to a small effective charge at the mo­
mentum Ak and allows restriction to the approxima­
tion considered. This sign is a consequence of 
general features of the theory (see Ref. 5) and 
should be positive (the d-function grows) in all 
variants of the theory; (2) the further decrease of 
charges, for momenta less than Ak. This decrease 
of charges occurs in all examples considered, al­
though the derivative ,\ '/,\, in general, contains 
terms of different signs. The case more compli­
cated than that considered in Sec. 3, namely, the 
interaction of three fermion and three boson fields 
with different isotopic spins (0, ~. l) does not 
lead to a different result. One might think that 
also the second characteristic is connected with 
general features of all variants of contemporary 
field theory. 

We note that we required L - Lk "'ln(A / Ak) 
to be large compared to unitl but finite. If we re­
quire the stronger condition, namely, ln(Ap/ Ak) -+ oo 

as AP -+ oo and Ak -+ oo, then the physical charge 

will go to zero also for A1 "' O(g < L k) and even for 
.\' < O(g < L k), provided only that ln(A/ Ak) in­
creases sufficiently rapidly as AP -+ oo and Ak -+ oo, 

If, however, this case actually occurs in some 
variant of the theory, then this signifies that there 
is ambiguity in the limiting transition from an ex­
tended interaction to a point one. In fact, setting 
Ak"' A in this case, we come to the conclusion 
that th: physical charge can differ from zero. 

The analysis of the different variants of the 
theory given above shows that the case ,\' :S 0 
does not occur. 

Thus, the construction of a meson theory with 
several nucleon and meson fields is apparently 
just as impossible as the construction, in the 
framework of modern quantum field theory, of a 
non-contradictory theory with one meson field. 
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