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A study is made of the question of the uniqueness of quantum field theory involving a 
cut-off factor, and it is found that even finite (renormalized) expressions depend on the form 
of the cut-off factor. Examples are given in which the renormalized Green's function of a 
boson has no pole for finite momenta, but the critical momentum in the charge renormaliza­
tion can be made arbitrarily large. In this connection difficulties with the vanishing of the 
charge and the existence of a pole in the Green's function are considered, and also the 
question of the domain of applicability of meson theory. 

l BECAUSE of the divergence difficulties inherent 
• in quantum field theory, use is often made of 

cut-off factors, which have the effect of reducing 
the part played by high-frequency virtual quanta, 
so as to secure the convergence of the expressions 
occurring in the theory 1 • 2• Upon completion of the 
intermediate calculations, the cut-off parameters 
(which play the part of effective limiting momenta) 
are let go to infinity, the cut-off factor (CF) ap­
proaches unity, and, at least formally, the original 
"not cut-off" theory is recovered. This procedure 
corresponds to regarding a point interaction as the 
limit of a smeared-out interaction. 

In such an approach to the problems of quantun1 
field theory there inevitably arises the question as 
to its uniqueness, i.e., as to the dependence of the 
results obtained on the form of the CF used. The 
most important aspect of this question is consid­
ered in the present paper: do the finite (renormal­
ized) expressions depend on the CF? 

This question has been given partial considera­
tion in Refs. 2 and 3, where it was answered in the 

negative; but it will be shown that this conclusion 
was essentially based on the use of CF' s that 
approached unity sufficiently rapidly with increase 
of the cut-off parameter. \'\e consider below a wider 
class of CF' s, for which the problem of lack of 
uniqueness takes on primary significan.ce. 

The study will be carried out in the framework 
of the asymptotic theory of Landau, Abrikosov, and 
Khalatnikov 2 (cf. also Ref. 4), with a single modifi­
cation- replacement of the plateau-shaped cut-off 
factor by a CF of more general type (but still very 
close to the plateau-shaped). The basic relation­
ships of the theory are the integral equations con­
necting the Green's functions G and D and the ver­
tex part 1', the integrands being certain combina­
tions of G, C D, and the CF. In the calculation of 
the asymptotic forms at large momenta it turns out 
that essential parts are played not only by the prin-
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cipal parts of G and r, but also by terms of the 
next order, which are given by increments of the 
corresponding integrands. For the CF's under con­
sideration, contributions are made to these incre­
ments not only by the increments of the functions 
G and r, but also by that of the CF itself; this 
fact is indeed the cause of the lack of uniqueness, 
which turns out to be intrinsic only in the integrals 
that diverge quadratically, i.e., for the boson 
Green's function D. As for the equations for G and 
r, they give the same results as in Ref. 2. 

In Sees. 3 and 4 the analysis is given for a num­
ber of cases that occur with various choices of the 
cut-off factors in electrodynamics and in meson 
theory with pseudoscalar coupling. Section 5 is 
devoted to a discussion of these cases from the 
point of view of the well-known difficulties associ­
ated with the vanishing of the charge and the exis­
tence of a pole of the D-function. 

2. The introduction of the CF into the theory is 
accomplished by smearing out the interaction, 

S ~· e1 ~ F (p, 1?. (I - k, A) f(p) A (l) 

for electrodynamics, and similarly for mesodynam­
ics. Here F is the CF, and A is the cut-off param­
eter. The CF must satisfy the conditions: 

F -> I for A ~ :XJ (I a) 

and F (p, k, q) = r (q, k, p). 

The second condition assures the preservation of 
Hermiticity under the smearing-out5• 

It is not difficult to convince oneself that when 
the smearing-out is introduced there must be asso­
ciated with each vertex of the Feynman diagram (or 
with each vertex-part operator) a factor F depending 
on the corresponding momenta. 

Concretely, the CF is taken in the factored form 
(but cf. footnote *): 

where all the functions are real. The cut-off param­
eters involved are in general taken to be unequal 
for the boson CF, f(k 2, A~), and the fermion CF, 
F(p2 , Ap, where, following Pomeranchuk, one takes 
A2 / Ak = V > l. The fermion factor is chosen 
pfateau-shaped: F(p2) = 0 for p2 > N and F(k2) = l 

p 

for p2 < N , and the boson function is nearly 
plateau-shaped: f(k ) f(k2 ) = g(k2 ) {oW), where 
[oW)= 0 for k2 > Ak, [o(k2) = l for k2 < Ak, and 
g(k2) is a function nearly equal to unity, with g = l 
for Ak -• oo or k -+ 0. 

3. Considering the asymptotic case in electro­
dynamics for p -+ oo and introducing the notations 
used in Ref. 2, we have 

Here (with the choice dl =0) we shall have 

a=f3=1.* 
The remaining equation for D (here D0 is the un­

perturbed Green's function) 

(4) 

already turns out to depend essentially on the CF. 
The polarization operator involved, 

e2 ~ 

Pp.v (k) = f2 (k) - 1 Sp ~ G (p) f ~'- (5) 
1:1 

X(p, P ·- k, k) G (p- k) "(v F 2 (p) P (p- k) d4p 

diverges quadratically, which corresponds to the 
appearance of a photon mass. Since this last can­
not be removed by any choice of a CF of the type 
( 1)6 , it is necessary to destroy it in a formal way 
-either by introducing a supplementary CF of the 
Pauli-Villars type 1 or simply by subtracting from 
the expression (5) the quantity Pf.LV(O), as is done 
in Ref. 2. Both ways give the same result, but we 
shall concern ourselves with the second, as the 
simpler. This gives Pf.LV = 0 for k2 >A\ and for 
k2 <A\ 

Pp.v (k) = Pp.v (k)- Pp.v (0) 

=? (k) :~ Sp ~ G (p) f" (p, p, 0) G (p) Tv F 4 (p)d~ p 

+g2 (k) j-sp~G(p) · L'ljf1,(p, p-k, k)G (6) 

X(p-k)P(p-k)]P(p)d4 p, 1-(k) 

= g2 (k)- .u;t (0) = g2 (k) - I. 

*It can be shown without difficulty that in the case 

dz f 0, with plateau-shaped fermion CF and arbitrary 

boson CF, as in Ref. 2, a and f3 have the form of phase 

factors, with af3 • I. 
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The first term corresponds to the contribution of 
the increment of the CF to PJ.Lv, the second to 
those of the increments of r and G (of order k2). 

Equation (6) agrees with the corresponding Eq. (5} 
of Ref. 3, except for the first term of the right-hand 
member of Eq. (6), which was not taken into ac­
count in Ref. 3. 

The expression (6) must he transverse,* i.e., 

then from Eq. (4} it will follow that 

d-1 (k) = 1 + p (k) i k~' (7) 

P (k) = (ei/ 2;.-)1' (k) A~+ (ei/ 3n) k2Jn (A7, / !?~). 

Here the factor g2 (k) before the second integral 
in Eq. (6) can be dropped, with accuracy up to 
terms that vanish for A -> oo. 

For d we now obtain 

ent forms for d. On the other hand, it is more con­
venient in practice to prescribe d and find the cor­
responding CF. 

A) Let us require, for example, that d agree with 
the usual expression in the regions 

and sAT,< k~ < Ai, , 

where E is a small quantity (it can go to zero for 
Ak -> oo, hut more weakly than Ak2). In the regions 
indicated one has the usual expressions 2 • 4 

d;l (k) = I'~ /~2 1--3 ln-0. :": m· (9) 

Here de = (e1/e)2d is the renormalized d-function. 
(8) In this connection, the charge renormalization re­

mains as before with all its inherent difficulties7• 4 

The cause of the lack of uniqueness of the re­
sult lies in the second term of Eq. (8); by choosing 
different expressions for q:>, one can obtain differ-

*Strictly speaking, the first integral in Eq. (6) is a 

longitudinal quantity; this leads to a dependence of the 

function dz on the field. But this can easily be avoided 

by taking a somewhat more complicated CF: 

F (p, k, p- k) == f (p, k) F (p) F (p- k), 

{2 (p, k) = t + 3 ;~kk: 9 (k). 

Then the first term of Eq. (6) becomes equal to 

instead of the value (e12 /2-rr) A 2 m(k) 6 for the case of pT J.LV 
the factored CF. Therefore no attention can be given to 

the nontransversality of Eq. (6), if we take q:>(k) to mean 

not rf (k)- 1, but 

0 k2 
:(~k)Z- ({2 (p, k)- 1]. 

The remark about the nontransversality of Eq. (6) is due 

to A. A. Abrikosov, 

In the intermediate region 

we take d constant and equal to its value at the 
left-hand end: 

d-;1 (k) = 1 - ~: InN. 

The corresponding CF' s are found from Eq. (8) 

from which we have 

(lO) 

(ll} 
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This example gives de that has no pole at any 
finite value of k. 

B) Another example relates to the change of the 
limiting momentum, under which, in the theory of 
Ref. 2, there appears the difficulty of the vanishing 
of the charge. We consider a d of the form 

Here 

We find the corresponding CF from Eq. (ll) 

9 (k) = (13) 

f 0, sAf, < k2 < A7, 
l - 2/ 3 (I- q) (k2 j A~) 1n (A:,; 1<2), k2 <sAy,. 

From this it can be seen that for sufficient! y small 
q the critical value of the momentum can be shifted 
as far out as one wishes. 

In both examples the CF satisfy the general re­
quirements of Sec. 2; the discontinuities appearing 
in them can easily be removed by taking a smoothed 
form of the function d. 

\Ve shall now show that in logarithmically diver­
gent integrals there is no need to take into account 
the fact that the CF is not plateau-shaped. Indeed, 
for Ak--> oo 

in virtue of 

We can now determine for what sorts of functions 
'P (k) the results of Refs. 2 and 3 remain valid. 
From Eq. (8) it can be seen that this is so if for 
finite k the quantity 

k2 < Nm2 , eA% < k2 < ,\} 
Nm2 < k2 <zA~. 

( 12) 

Jl 1 +q(ei/3rr)ln(A~jk2), 
1 + (ei/ 37t) In (A! j k2), 

k2 < EA~, 
zA%<k2 < At. 

goes to zero as Ak increases. If we introduce 
x = Aj,2 , then for fixed k this condition will mean 
that cp (x)l x = dcp I dx must vanish for x -> 0. Thus 
the CF will make a contribution to d if dfld(Aj.2 ) 

either approaches a finite limit (as in the first 
example) or increases (as in the second example). 
The remaining details of the structure of the CF, 
besides the angle of inclination of the tangent at 
PI Ak = 0, such as the curvature, etc., have no 
residual effect on d because of the quadratic diver-

gence of P , since their contribution vanishes for 
).LV 

A .... oo. 

As for the calculation of the complicated vertex­
part diagrams not considered in Ref. 2, in the first 
example, d is equal to or smaller than the corres­
ponding d in Ref. 3; therefore the estimates carried 
out in Ref. 3 can be used. The same applies to the 
second example. 

4. Going over to mesodynamics with weak 
pseudoscalar coupling and using the notations of 
Ref. 8, 

G (p) =~I p, I\,=~= ':[J. ·;5 ::t., 

D 1,., (k) = 1<-" d (!?") '~:""' 

we obtain for G and f' the well known results: 8 •4 

:X = r~-'l,, < 14) 

d::'i / dt (3gi /8 rr) [p (1;)1--'/, d (0, ~ = 1n (k~ /me). 

The equation ford, after renormalization of the 
meson mass, gives: 
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gi Lp 

d-1 (0 = I + cD (~) + rt ~ [1'• (z) dz; 
~ 

l A2 
cD (~) = 2/ -!t -k~' [g2 (k)- 1], 

1 

I= ~WI· (z)dz, 
0 

A2 
L =In-· m2 

(15) 

The CF is connected with the relationship, follow­
ing from Eqs. (14) and ( 15), 

(16) 

A) Let us consider a problem like the first ex­
ample in electrodynamics-the destruction of a 
pole in the ordinary charge renormalization. We 
take the function d of the form given by 
[N < exp (411/5i)]: 

i [ 1 + -~- (Lp- Lh) J Q'l, (L,- E), 

I ; < 1 n N, L" - In ·~ · < ~ < L 1" 

{ 
I 
I 
l InN<~ < Lh- In 

E 
. ( 17) 

Here we have introduced the notation 

( 5~~ ) I [ gi J Q (x) = . 1 + ;,7': x I -i· 7.- (Lp- L 1,) • 

The corresponding CF is given by Eq. (16) 

g2 (/c)- 1 (18) 

L1<-ln(l je)<~<L11 , 

InN<~<Lh-In(l/e), 

:;<!tiN, 

where A and B are slowly varying functions of~. 
whose forms we shall not present because of their 
cumbersomeness. 

B) We go on to the second example- the dis­
placement of the critical momentum in the charge 
renormalization. We take the function 

(19) 

r l + ~ (Lp- L1,) JQ•:, (Lh- ~), 
L~t- ln - 1 < ~ < L~;, z 

d-1 (0) L 1 _ :1t g2~r', ~ < L11- ln + 
Here we have used the renormalized charge 

g2 = d (0) 01;2 (0) [:l2 (0) gi. (20) 

We prescribe also the charge renormalization 

(21) 

and determine by means of Eqs. (20) and (21) the 
quantity d(O), after which we find from Eq. (16) the 
corresponding CF: 

g2 (k)-1 = 

(22) 

"< T l 1 ' Lk- n s • 

In this case, just as in electrodynamics, one can 
find a CF that simultaneously fulfills the require­
ments for the CF of both of the problems consid­
ered, i.e., displaces the pole in the charge renor­
malization and removes the pole in the d-function. 

5. In passing on to the discussion of the exam­
ples analyzed above, it is first of all necessary to 
emphasize the fact of the nonuniqueness of the 
theory based on the limiting process. Generally 
speaking, the lack of uniqueness of diverging ex­
pressions with respect to the form of the limiting 
process has been repeated! y noted in the litera­
ture.1•9 Examples are given above in which also 
the finite (renormalized) expressions depend on 
the type of CF used. This circumstance forces us 
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to proceed with caution to the conclusions of a 
theory that makes use of a limiting process. 

In all of the examples considered above, there 
appeared a difficulty with the vanishing of the re­
normalized charge [Eqs. (9), (12), (21)],4 •7 which 
provides evidence of the fact that the present form 
of quantum field theory is not a closed theory.* It 
is, however, also possible to take the view that the 
vanishing of the charge is in itself not an essen­
tial difficulty that paralyzes the development of the 
theory in its present form. The quantum field 
theory includes in itself the renormalized theory 
and the relation between the priming and renormal­
ized constants. In view of the fact that only the 
renormalized theory is compared with experiment, 
it would be possible to pay no attention to the re­
lation between the constants, leaving the difficul­
ties connected with this to a future theory. In other 
words, the expressions that play the role of the re­
normalized quantities would in this procedure have 
assigned to them the values that follow from ex­
periment, despite the fact that in the present 
theory they actually vanish. Such an approach does 
not lead to its goal when a plateau-shaped CF is 
used, because of the appearance of difficulties in 
the renormali zed theory itself- besides the van­
ishing of the charge, a pole at a finite momentum 
appears in the renormalized d-function. 

The situation is essentially altered, as is shown 
by the examples given above, when one uses CF' s 
that are not plateau-shaped. On one hand, the ap­
pearance of a pole and the vanishing of the charge 
cease to be facts that are coupled to each other. 
Concrete examples have been presented of CF' s 
for which the d-function does not have a pole at 
any finite momentum. On the other hand, the value 
of the critical momentum at which the renormalized 
charge becomes small is also essentially not 
uniquely determined by the theory of Landau, 
Abrikosov, and Khalatnikov. 2 Therefore, for ex­
ample, the conclusions about the supposed inap­
plicability of mesodynamics already at energies 
-,Mc2 , which are often drawn on the basis of the 
theory of Ref. 2 and which rest on the fact that 
with a plateau-shaped CF the critical momentum 
-Me, cannot be regarded as entirely convincing.** 

* In this connection it is of course assumed that 
the approximate treatment of this question actually re­
flects, even if only qualitatively, the true situation. 

**In electrodynamics, because of the smallness of the 
coupling constant, the critical momentum is very large, 
and there this question appears less sharply. 

We note that in the examples considered above 
the well known theorem of Lehmann and Kallen 
about the increase of the renormalized d-function 
with the momentum 10 is satisfied. In a certain 
sense this provides evidence of the existence in 
the renormalized theory of a complete orthogonal 
system of eigenfunctions of the energy and mo­
mentum.* One can without difficulty assume a CF 
such that the d-function has no pole and at the 
same time the renormalized charge is finite. For 
this it suffices to consider example (B), where one 
must take q negative (and large absolute value). 
Then the priming charge e1 and the renormalized 
charge e will satisfy 

0 2 \2 [ \2 ]--1 e1 e1 1 P p2 , I 1 P 
-., = 1 -- -;;- i q ! In~. = 1 + ~ [ q I n m"- , e"" u:t · rn.. u7t .. 

i.e., e1 vanishes for A-> oo, and e remains finite. 
The renormalized function de takes the form 

e2 k2 
I+ lql"ln ~., k 2 < e:A~ 

viT m· 

d-1-
c -

, e2 A~ e2 + ! q I 3rr In 7 + 3rr In 

Moreover, one can choose the CF so that in the 
region of small momenta d c agrees with the pertur­
bation theory (c{. example A). At the same time the 
correction diagrams of the vertex part are small for 
this case. But in this example the Lehmann-Kallen 
theorem 10 does not hold. The question of the su­
periority of a plateau-shaped CF in comparison 
with that just considered nevertheless remains un.:. 
clear, since the existence of a complete orthogonal 
system is only a sufficient condition for the Leh­
mann-Kallen theorem. Therefore, even if one uses 
a CF that does not contradict this theorem there is 
no assurance of the existence of a complete or­
thogonal system (except for e == 0). 

The question arises of the possibility of finding 
a CF such that e would be finite and at the same 
time the Lehmann-Kallen theorem 10 would hold. 
Within the framework of the approximate theory 2 

such a CF can easily be found. For this it suffices 
to let q approach zero in the example (B) just dis­
cussed, in such a way that the critical momentum 

*Attention was called to the importance of this fact 
by I. Ia. Pomeranchuk. 
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will increase with A: q > 0, q(el/3rr) ln (N/m2) < l 
for all A above a certain value. Here e1 can be 
either finite or infinite. Together with this one can 
choose a function de with no pole. 

But in the evaluation of the overlapping diagrams 
of a vertex part it is found that in this case the 
"three-gamma" approximation 2 is inadequate. This 
fact is of a general character. Indeed, if we begin 
with a theory with e f, 0 and d c increasing with the 
momentum, then for the diagrams in question we 
shall have the expression [with a = f3 = l as in 
Eq. (3)]: 

[dc(O) = 1], which is large in comparison with the 
zeroth approximation. The estimates of Pomeran­
chuk, 3 which indicated that the part played by 
these chains is small, rested essentially on having 
e2 -. 0 for A -. oo. Thus the applicability of the 
"three-gamma" approximation is fundamentally con­
nected with the condition e2 -> 0. 

Therefore the question of the possibility of 
choosing a CF such that the charge does not go to 
zero remains essentially open, because of the lack 
of a simple scheme of calculation in which this 
question could be studied. 
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