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A method for separating the collective motions in a system of interacting particles is 
presented. The connection between this method and Refs. 1-4 is established. An attempt 
is made to give a basis to the generalized heavy nucleus model. 

I MOST quantum mechanical systems that are dealt 
•with in the various fields of physics consist of a 

large number of particles. The problems of finding 
the energy spectrum of such a system presents great 
mathematical difficulties. From among the quantum 
mechanical systems with large number of particles, 
we can separate out that class of systems in which 
collective motion, reminiscent of the motion of a 
continuous system, takes place. Among such systems 
are, for instance, heavy atomic nuclei, the electrons 

2. At the basis of the method lies the transforma-
tion of the Hamiltonian with the aid of auxiliary var­
iables introduced into the wave function of the sys­
tem, as has been described by Zubarev 1• 

We consider the wave function II' (r 1 ... r N; t) de­
scribing a system whose Hamiltonian is 

(l) 
i j 

and introduce the auxiliary ("superfluous") variable and ions of a metal, and others. 
The problem of the approximate methods for de- functions Cfi/rj) (where f = l, 2, · · · • N), which for 

scribing such systems reduces to finding those terms the time bemg are arbitrary, and instead of II' we 
in the Hamiltonian which correspond to collective shall consider the new wave function (a functional 

motion. In the case of central forces, the problem of of the Cf'j) 
separating out the collective motions was solved by <D (r1 ... rN; 91 (rl) · · · '!(N (rN); t). (2) 

Zubarev 1, and for the case of Coulomb forces by 
Bohm and Pines 2 using a different method. An in­
teresting method for describing collective motion, 
well set forth and of great generality, has been de­
veloped by Tomonaga 3 •4 • The present article de­
scribes a method for separating out collective mo­
tions is systems, which is very simple in the sense 
that it does not require the complex apparatus of 
second quantization and unitary transformations. At 
the same time this method is quite general. 

since <I> depends on r j explicitly as well as through 
the cp., the operator p. must be replaced by 

I I 

(3) 

As will be shown below, part of the potential energy 
can also be described in terms of the cp. (r .). 

Let us now make some comments ab6ut 1the cp. (r.). 
We assume that cp.(r.) is the wave function of t&e 1 

stationary state oi the j -th particle in the zeroth 
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approximation. As will be shown later, the coordi­
nates of the collective motion can be described in 
terms of the cp .• When the cp. are given this interpre-

1 1 
tation, the description of the collective motion in 
the system will be most accurate if the single-par­
ticle functions cp. are chosen accurately. We shall 

1 
consider below several special choices of the cp .• 
This interpretation of the cp. makes it possible dn 
the one hand to obtain the Hamiltonians derived in 
previous works 1•2 •4 , and on the other hand indi­
cates the possible paths that may he taken in 
solving a boundary value problem. Let us now con­
consider certain special choices of the cp. (r.). 

1 1 3. Let us make the choice 

(4) 

This wave function describes the stationary states 
of a free particle with momentum p =1ik. The kinetic 
energy operator for this choice of the cp. can he 

1 
written 

if we hear in mind the obvious relation 

In order to account for states with various k in 
Eq. (5), we must sum over all values of k. From 
physical considerations \k \may not he infinite, and 
we shall therefore introduce a certain maximum wave 
number k 0 • Thus in Eq. (5) and those that follow, 
whenever the index k occurs twice we are to sum 
over k from zero to k 0 • 

In the case of a central interaction the potential 
energy can be written 

~ ~ G(lri-r/1) =-~ G(k)pkp~ (7) 
i,j 

1 + 2 ~ G (k) eik(r;- ri) + const, 
j,J,k>ko 

const =- N ~ G (k), 
k<ko 

where G (k) is the Fourier transform of the interaction 
kernel, the constant is the self-energy of the parti­
cles, and N is the number of particles per unit vol­
ume. 

The sum of expressions (5) and (7) gives the 
Hamiltonian of the system, which agrees with the 
Hamiltonian as obtained by Zuharev. 1 The dynam­
ical variab.les pk describe the collective motion of 
the system and can he written in terms of the station­
ary state free particle wave functions of Eq. (4). 
Following Zubarev, the pk can be treated as the­
Fourier transform of the particle density operator 

If we perform the substitution 

- ihajap" = (4rre~N2jk~)'l• q,, 

P~< = - i (k2j4T:eN2 f""P-k, 

(7a) 

(7b) 

in the Hamiltonian we have obtained, we arrive at 
that of Bohm and Pines, 2 which is equivalent to that 
of Tomonaga, as has been shown 4 • 

The separation of the collective motion of the sys­
tem is related to maintaining a term proportional to 

[ \/. pk a; a pk] 2 in the Hamiltonian. For the case of 
th~ electromagnetic and Coulomb interactions, this 
term is proportional to the square of the vector po­
tential of the transverse and longitudinal fields, 
respectively. 

4. As an example of a solution of a boundary value 
problem, let us consider a system of particles en­
closed within a surface described by the equation 

R=Ro[l+ ~ CXtmYtm({t,rp)], 
m,l<lo 

(8) 

where Y lm is a spherical function, and R 0 is the ra­
dius of the unperturbed sphere. From physical con­
siderations, the summation in (8} is taken over all 
l <l 0 • Since the surface hounding the system is de­
fined by the set of particles on the boundary, surface 
oscillations of the order of the mean distance be­
tween particles have no physical meaning; this leads 
to the inequality l < l 0• 

Our problem consists of choosing the cp. (r.), in 
terms of which we can express the collecfiv~ coordi­
nates. In the approximation of a constant particle 
density in the system (neglecting compressibility) 
we may choose the cp. (r .) in the form 

1 1 

(9) 

where the S. give the velocity potential of the j-th 
1 
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particle up to a factor of 1/M. In the constant-den­
sity approximation the stationary particle states are 
given by the functions of Eq. (9) with 

(lO) 

The function S. is a sol uti on of the Laplace equation 
satisfying the boundary condition 

(ll) 

which makes it possible to express the f3zm coeffi­
cients in terms of the normal coordinates of the sur­
face '1m. For small oscillations we have 

R ,-IR2-I" 
rim = o rxlm· (12) 

Let us consider the kinetic energy operator 

(13) 

and transform from the variables S. to ex.. : 1 ··lm 

Here, as in the previous problem, we sum from zero 
to l 0 over all indices m and l which occur twice, so 
as to take account of all possible stationary single­
particle states. 

In order to interpret the expression ( \li '1m), we 
must write a. 1m in terms of the particle coordinates 
ri. For this purpose, let us introduce the function 

S=k .S .. It is clear that 
I I 

X[~ rJYzm (&i~J)] 8 ~ 1m _a_. 
1 as a~ 1m 

But it follows from the definition of S that 

or 

Expressing the {31'm in Eq. ( 15) in terms of the a. 1m, 

after multiplication and division by 4TT/3N we obtain 

( 16) 

Inserting ( 16) into ( 13), and comparing the result with 
(14), we obtain an expression for the a.1m which oc­
curs in A. Bohr's phenomenological theory of the nu­
cleus: 

Let us use the '1m to write part of the potential en­
ergy. We shall assume that the potential energy is 
the sum of interactions between pairs of particles, 
so that 

V = 1/2 ~G(ri, ri) 
ij 

( 18) 

(the summation 1s taken over all indices). Bearing 
in mind Eq. (17) and the fact that l <l0 , we can write 
( 18) in the form 

( 3N ) 2 -1-1' I'm' V = 167t Ro G1m rx1mrxl'm' 

+ - ~ Glm rx1mYl'm' -tr(fi fj ( 3N) "' I'm' (n. ) l 

47t m', 1'>1,; j 

+ ~ ~ Gz, (ri, r1), 
ij 

( 19) 

1 "' l' m' l l• ) y (n. } = 24..JGlm rirjYzm<&itfi I'm' 1Tjtfj' 

m', l', m, L > 10 • 

When the indices m and l occur twice, we sum from 
zero to l 0 • 

The first term in Eq. ( 19) describes the potential 
energy of collective motion, the second term the in­
teraction energy between the individual particles 
and the collective oscillations, and the final term 
the interaction between particles screened by the 
surface oscillations. 

The final expression for the Hamiltonian describ­
ing a system undergoing small surface oscillations 
in the constant density approximation is given by 
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the sum of ( 14) and ( 19). This Hamiltonian agrees 
with that of the phenomonological theory of the gen­
eralized nuclear model. 

- £ 1° +- (V' so) -- - -- - = oo 1 2 Jt2 [l:lp j 1 (l:lp j)2] 

2M 1 4M Pj 2 Pi ' 
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The introduction of auxiliary ("superfluous") var­
iables leads to the necessity of applying subsidiary 
conditions to the wave function, and these can be 
written 

1 v- 0 M V' (piV'S) = 0, rpi (ri) = pi exp (t/nSi). 

for the first of the problems considered here (Sec. 3), 
and 

[a:1"'- (4.-:j3N) ~i(t)R/Y1 "' (-&/?i)] <D = 0 
(21) 

for the case of surface oscillations. 
5. The special choices of the cpo(ro) considered 

1 1 
above can be generalized for other problems. The 
generalization consists of indicating a method for 
finding the cpo(r 0). 

1 1 
In solving boundary value problems the Schr~d-

inger equation can he written in the hydrodynamic 
form 

This representation of the Schrodinger eqqation is 
convenient in that it is simple to formulate boundary 
conditions for it in analogy with hydrodynamics. 

In the constant density case the S 0 satisfy 
1 

Laplace's equation. However this is not the only 
generalization. The cpo(r o) can, for instance, he found 
from self-consistent £lela equations. 
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The energy of a homopolar crystal is expressed as a function of the displacements and of 
the dipole moments of the atoms. By means of a variational method, the relation between 
the displacements and the deformation of the electronic shells of the atoms is established 
and equations of motion are presented in which the displacements and dipole moment of the 
atoms play the role of generalized coordinates. 

A S was shown in a paper by one of the authors 1, from a single point of view. The explicit introduc-
llorn's atomic theory 2 can be improved by taking tion of the quantities' P: is necessary also in the 

into consideration the deformability of the atoms. In microscopic theory of localized electron states in a 
the foundation of a theory of the lattice one must as- crystal 4 • 

sume an expression for the energy U in the form of a While in ionic crystals the consideration of the 
quadratic function of the displacements u! and of the deformahility of the ions improves the quantitative 
dipole moments P! of all the atoms (l is the cell nnm- agreement of theory with experiment 1, in homopolar 
her and s the number of the atom in the cell), In the crystals, where the dipole moments of the displace­
calculation of delay of interaction, one can consider ments nl =e ul are absent (e =0), such considera-4 s s s 
optical, electrical and elastic properties of crystals tions lead to a series of qualitatively new conse-




