These formulas become much simpler in the extreme relativistic limit. After integrating over angles, the relative differential probability becomes identical for magnetic and electric transitions, namely

$$d\gamma_{j} = \frac{(2j+1) \alpha^{2}}{2 (2\pi)^{2}}$$

$$\times \left(1 - \frac{m^{2} (\Delta E - k)}{\Delta E \varepsilon_{+} \varepsilon_{-}}\right)^{j} \frac{(\varepsilon_{+}^{2} + \varepsilon_{-}^{2}) k}{(\Delta E - k)^{2} \Delta E^{3}} dk d\varepsilon_{+}.$$

The ratio of the differential probability for internal Compton effect to the probability for ordinary internal pair-conversion is roughly given by

$$d\gamma_i/d\beta_i = (\alpha/2\pi) k dk/(\Delta E - k)^2$$

provided that $\Delta E - K >> m$.

In conclusion the author thanks I. S. Shapiro for valuable advice and assistance.

Translated by F. J. Dyson 86

The Momentum Distribution of Interacting Fermi Particles

A. B. MIGDAL

(Submitted to JETP editor November 22,1956) J. Exptl. Theoret. Phys. (U.S.S.R) 32, 399-400 (February,1957)

E consider a system composed of a large number of interacting Fermi-particles. It is to be expected that among the excited states of the system there will exist states whose energy can be expressed as a sum of energies of quasi-particles. The energy of a quasi-particle of momentum p is

$$\varepsilon_p = v_0 \left(p - p_0 \right)_{\mathbf{r}}$$

where p_0 is the momentum at the top of the Fermi sea of the quasi-particles, $v_0 = v (p_0)$ is the velocity of a quasi-particle at the Fermi surface, $p > p_0$ for quasi-particles and $p < p_0$ for holes. The momentum p_0 need not coincide with the limiting momentum p_0^0 determined by the density,

$$p_0^0 = (3\pi^2 n)^{1/3}, \qquad (\hbar = 1)$$

It is easy to see that the quasi-particles have an attenuation proportional to $(p - p_0)$.² This means

that for p_0 not close to p_0 an excited state of a system with strong interactions cannot be described in terms of quasi-particles. As $p \rightarrow p_0$ the state becomes describable in terms of quasi-particles even

when the interaction is strong. We shall prove that the momentum distribution of the particles in the ground state has a discontinuity at $p = p_0$, for any kind of interaction. This result refers to the distribution of particles and not of quasi-particles.

The one-particle Green's function is defined by

$$G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2)$$
(1)

$$= i \langle T e^{iHt_1} \Psi(\mathbf{r}_1) e^{-iH(t_1-t_2)} \Psi^+(\mathbf{r}_2) e^{iHt_2} \rangle.$$

where the expectation value is taken in the ground state of the system $\Psi(\mathbf{r}) = \sum a_{\mathbf{p}} e^{i\mathbf{p}\mathbf{r}}$, and $a_{\mathbf{p}}$ is the annihilation operator for a particle of momentum p. If there is no external field, G is a function only of $r = |\mathbf{r}_1 - \mathbf{r}_2|$ and $\tau = t_1 - t_2$. Expressing G as a Fourier series in coordinate space, we find

$$G(r, \tau) = \sum G(p, \tau) e^{i \mathbf{p} \mathbf{r}}; \qquad (2)$$

$$G(p, \tau) = \begin{cases} i e^{iE_{0}\tau} < a_{\rho} e^{-iH\tau} a_{\rho}^{+} >, \quad \tau > 0, \\ -i e^{-iE_{0}\tau} < a_{\rho}^{+} e^{iH\tau} a_{\mathbf{p}} >, \quad \tau < 0. \end{cases}$$

This equation connects the function $G(p, \tau)$ with the momentum distribution of particles in the ground state, which is

$$n(p) = \langle a_{\rho}^{+} a_{\mathbf{p}} \rangle = i G(p, \tau) |_{\tau \to -0}$$

Writing

$$G(p, \tau) = \int G(p, \varepsilon) e^{-i\varepsilon\tau} d\varepsilon / 2\pi$$

we obtain

^{1.} E. G. Melikian, J. Exptl, Theoret, Phys. (U.S.S.R.) 31, 1088 (1956); Soviet Phys. JETP

$$n(p) = i \int G(p, \varepsilon) e^{-i\varepsilon\tau} d\varepsilon / 2\pi,$$

$$\tau \to -0.$$

In the last integral we must not take the limit $\tau = 0$ before integration, since the integral $\int G(p, \epsilon) d\epsilon$ diverges along the real axis. For finite negative τ , we can replace the integral along the real axis by an integral round a closed contour C consisting of the real axis together with a semi-circle at infinity in the upper half-plane. After this we can set $\tau=0$. Thus we have

$$n(p) = i \int_{C} G(p, \epsilon) d\epsilon / 2\pi.$$
 (3)

The Green's function must have poles corresponding to quasi-particles. This follows from the representation of the Green's function in terms of the eigenstates of the whole system, according to the procedure of Lehmann.¹ Therefore, for p close to p_0 ,

$$G(p, \varepsilon) = Z / (\varepsilon_n - \varepsilon - i\gamma(p)) + f(p, \varepsilon)$$

where $f(p, \epsilon)$ is a function regular at $\epsilon = \epsilon_p - i\gamma$, and γ defines the attenuation of a quasi-particle and

changes sign at $p = p_0$ as is required in order to give the correct sign for the attenuation of holes.

The constant Z may be called the renormalization constant of the Green's function. When $p < p_0$, $\gamma < 0$ and G has a pole in the upper half-plane near

to the real axis. When $p > p_0$, $\gamma > 0$ and this pole crosses to the lower half-plane where it is outside the contour C. Therefore,

$$n(p_0-0)-n(p_0+0)=Z,$$
 (4)

and since $0 \le n(p) \le 1$, the renormalization constant satisfies the inequality $|Z| \le 1$.

1 H. Lehman, Nuovo Cimento 11, 342 (1954); reproduced in "Problems of Modern Physics," 3, 1955.

Translated by F. J. Dyson 97

The µ-decay of K-particles and Hyperons

L.B.OKUN' (Submitted to JETP editor November 22,1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 400-402 (February, 1957)

pions and K-particles are primary, and that the interactions of μ -mesons with hyperons and nucleons are secondary effects of the weak primary bosonfermion interaction. We here consider some elementary consequences of this hypothesis and discuss possible experimental tests of it.*

We suppose that the decays

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu$$
 and $K^{\pm} \rightarrow \mu^{\pm} + \nu$, (1)

are primary, and that all other interactions of μ -meson and neutrino with baryons and heavy mesons are results of a chain of interactions of which the process (1) constitutes one link. Such a chain of interactions can describe in particular the μ -decay of hyperons (e. g., $\Lambda^{\circ} \rightarrow p + K^{-} \rightarrow p + \mu^{-} + \nu)$ and the so-called $K_{\mu3}$ -decay of K-particles (e. g., $K^{+} \rightarrow \pi^{\circ} + K^{+} \rightarrow \pi^{\circ} + \mu^{+} + \nu)$. The other links in the chain must be strong interactions. Thus the other links cannot be processes in which strangeness is not conserved, such as $K^{+} \rightarrow \pi^{+} + \pi^{\circ}$, $\Lambda^{\circ} \rightarrow p + \pi^{-}$, etc.

 $\Lambda^{\circ} \rightarrow p + \pi^{-}$, etc. The last remark implies that every μ -decay of particles with strangeness + 1 (the K^{+} and K° -particle and the anti-hyperons $\overline{\Lambda}$ and $\overline{\Sigma}$) must go via the μ -decay of the K^{+} ($K^{+} \rightarrow \mu^{+} + \nu$) while the μ -decay of particles with strangness - 1 (K^{-} and \overline{K}° and the hyperons Λ and Σ must go via the K^{-} decay ($K^{-} \rightarrow \mu^{-} + \nu$). So for the K° -particle, the decay

$$K^0 \to \mu^+ + \nu + \pi^- \tag{2}$$

is allowed, while

$$K^0 \to \mu^- + \nu + \pi^+;$$
 (2')

is forbidden, and for the \overline{K}° , the decay

$$\overline{K^0} \to \mu^- + \mathbf{v} + \pi^+ \tag{3}$$

is allowed while

$$\overline{K}_0 \to \mu^+ + \nu + \pi^-. \tag{3}$$

is forbidden. Also, in order to construct the twostep chain for the $K_{\mu3}$ decay, we must have two

types of K-particle, a scalar θ and a pseudoscalar τ , if the K-particle spin is zero. Otherwise, since the pion is pseudoscalar, parity would not be conserved in the process $K \rightarrow K + \pi$, and this is a strong interaction which must conserve parity. If