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These formulas become much simpler in the 
extreme relativistic limit. After integrating over 
angles, the relative differential probability be­
comes identical for magnetic and electric transitions, 
namely 

dy._(2j+1)a2 
I - ~ (<.7t)2 

The ratio of the differential probability for 

internal Compton effect to the probability for 
ordinary internal pair-conversion is roughly given 
by 

provided that l'lE-K >> m. 

In conclusion the author thanks I. S. Shapiro 
for valuable advice and assistance. 

1. E. G. Melikian, J, Exptl, Theoret, Phys. (U.S.S.R.) 
31, 1088 (1956); Soviet Phys. JETP 

Translated by F. J. Dyson 
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WE consider a system composed of a large num­
ber of interacting Fermi-particles. It is to be 

expected that among the excited states of the sys­
tem there will exist states whose energy can be 
expressed as a sum of energies of quasi-particles. 
The energy of a quasi-particle of momentum p is 

e: p = Vo (p -Po), 

where p 0 is the momentum at the top of the Fermi 

sea of the quasi-particles, v = v (p ) is the velo-o 0 
city of a quasi-particle at the Fermi surface, p > p 

for quasi-particles and p < p 0 for holes. 

The momentum Po need not coincide with 

0 

the limiting momentum p ~ determined by the density, 

P~ = (3~n)'la, (fi = 1). 

It is easy to see that the quasi-particles have an 
attenuation proportional to (p-p 0 ). 2 This means 

that for p 0 not close to p 0 an excited state of a sys­

tem with strong interactions cannot he described in 
terms of quasi-particles. As p --+p 0 the state be-

comes describable in terms of quasi-particles even 
when the interaction is strong. We shall prove that 
the momentum distribution of the particles in the 
ground state has a discontinuity at p = p 0 , for any 

kind of interaction. This result refers to the distri­
bution of particles and not of quasi-particles. 

The one-particle Green's function is defined by 

(l) 

= i <Te!Ht, 'I" (rl) e-iH (t,-t,) 'I"+ (r2) eiHt•>, 

where the expectation value is taken in the ground 
state of the system IJI ( r) =~a e i pr, and a is the 

p p . 

annihilation operator for a particle of momentum p. 
If there is no external field, G is a function only 
of r =I r 1 - r 2 1 and T= t 1 -t2 • Expressing Gas a 

Fourier series in coordinate space, we find 

This equation connects the function G (p, T) with 
the momentum distribution of particles in the ground 
state, which is 

Writing 

G (p, -r) = ~ G (p, e:) e_;e-, de: J 21t, 

we obtain 
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n (p) = i~ G (p, e) e-ie-r de I 2-r:, 

"~-o. 

In the last integral we must not take the limit T= 0 
before integration, since the integral fG ( p, E) dE 
diverges along the real axis. For finite negative T, 

we can replace the integral along the real axis by 
an integral round a closed contour C consisting of 
the real axis together with a semi-circle at infinity 
in the upper half-plane. After this we can set T=O. 
Thus we have 

n (p) = i ~ G (p, e) de I 2-r:. (3) 
c 

The Green's function must have poles corresponding 
to quasi-particles. This follows from the represen­
tation of the Green's function in terms of the eigen­
states of the whole system, according to the proce­
dure of Lehmann. 1 Therefore, for p close to p 0 , 

G (p, e)= Z I (ep- e- iy (p)) + f (p, e) 

where f( p, d is a function regular at E = E - £ y, 
p 

and y defines the attenuation of a quasi-particle and 
changes sign at p = p 0 as is required in order to 

give the correct sign for the attenuation of holes. 
The constant Z may be called the renormalization 
constant of the Green's function. When p < p 0 , 

y < 0 and G has a pole in the upper half-plane near 
to the real axis. When p > p 0 , y > 0 and this pole 

crosses to the lower half-plane where it is outside 
the contour C. Therefore, 

n (Po -O)-n(p0 + 0) = Z, 

and since 0 .:: n (p) :._ l, the renormalization 

constant satisfies the inequality I Z I ::;, l. 

(4) 

1 H. Lehman, Nuovo Cimento 11, 342 (1954); reproduced 
in "Problems of Modern Physics," 3, 1955. 

Translated by F. J. Dyson 
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R ECENTLY Schwinger 1 suggested that the weak 
interactions of /!-mesons and neutrinos with 

pions and K-particles are primary, and that the in­
teractions of /!-mesons with hyperons and nucleons 
are secondary effects of the weak primary boson­
fermion interaction. We here consider some ele­
mentary consequences of this hypothesis and dis­
cuss possible experimental tests of it.* 

We suppose that the decays 

-r:± ._,. tJ.± +v and K± ~ IJ.± +v, ( l) 

are primary, and that all other interactions of 
/!-meson and neutrino with baryons and heavy 
mesons are results of a chain of interactions of 
which the process (l) constitutes one link. Such a 
chain of interactions can describe in particular the 
/!-decay of hyperons (e. g., A 0 ->p + K- ->p + IL- +v) 
and the so-called KIL3 -decay of K-particles (e. g., 

K + ->rr '' + K + ->rr 0 + fL + + v). The other links in 
the chain must be strong interactions. Thus the 
other links cannot be processes in which strange­
ness is not conserved, such as K+ _,1T+ + rr.,, 
A 0 ->p + rr-, etc. 

The last remark implies that every p,-decay of 
particles with strangeness + l (the K +and K 0 -par-

ticle and the anti-hyperons A and f ) must go via 
the wdecay of the K + (K + _,11 + + v )_while the 
p.-decay of particles with strangness -1 (K- and K 0 

and the hyperons A and k must go via the K decay 
(K- _,IL ·- + v ). So for the K 0 -particle, the decay 

(2) 

is allowed, while 

(2 ') 

is forbidden, and for the K 0 , the decay 

(3) 

is allowed while 

(3 ') 

is forbidden. Also, in order to construct the two­
step chain for the K decay we must have two 

p.3 ' 
types of K-particle, a scalar e and a pseudoscalar 
T, if thee K-particle spin is zero. Otherwise, since 
the pion is pseudoscalar, parity would not be 
conserved in the process K ->K + 1T, and this is a 
strong interaction which must conserve parity. If 


