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process for which the matrix element is given by 

si~J=--v~w ~~1-)(ye)eikxtj!~+~d~x; (l) 

Here t/J (-)is the wave function of a proton in the 
p 

field of the nucleus, behaving asymptotically like 
a plane wave of momentum p together with an in­
going spherical wave. t/J (;t_l is the wave-function of 

-p 

a proton with negative energy-£, behaving asymp­

totically like a plane wave of momentum -p with 
an outgoing spherical wave. e is the polarization 
vector of the photon. The proton-antiproton inter­
action is neglected; this is allowable when the 
photon energy w is not too close to the threshold. 
The wave-functions t/J (- l and t/J rv< +) are construc-

p -p 

ted by means of the optical model, in which the 
interactions of the proton and antiproton with the 
nucleus are described phenomenologically. 

The problem becomes very simple in the limit 
w > > 2M , when the important part of the matrix 
element comes from a region far from the nucleus, 
where the wave functions behave like a superposi­
tion of a plane wave and a wave diffracted by the 
nucleus. Akhiezer 1 has worked out the theory of 
diffraction for spinor waves, and he finds for the 
wave function of a spin -l/2 particle scattered by 
a completely black absorbing nucleus of radius R 

(2) 

eiP 1 x-p 1 

X I x- PI (yn)v -J; dp·e;ift, 

(p > R, p_l n). 

Here the integration extends over a plane through 
the center of the nucleus and perpendicular to the 
unit vector n= (p/ !Pi). v rvis the spinor amplitude 

-p 
of the plane wave with momentum -p and negative rv 
energy -E. Similarly, 

-(-) _ _!_ 
<J!p - 47t (3) 

~ ( a ) eiP I x-p l 
X up (yn) y _o_x_ + Y4£ + M dp·eiEt, lx-pl 

(p > R, p _l n), 

with n= (p/ IPI ). The Coulomb interaction between 
the nucleons and the nucleus is neglected. 

The idea of diffractive scattering only makes 
sense at small angles. Supposing the angles be-

tween the pair momenta p, p and the phonon momen­
tum k to be small, and the energies E, E large com­
pared with M, the cross-section for proton-antiproton 
pair production by a black uncharged nucleus be­
comes 

(4) 

R2I7 (MR I ~ + YJ I) [ 2 (~ + YJ)2 
X I ~ + 'fl 12 (1 + ~2) (1 + 1J2) 

(, w2 ) ( 1 1 )2j' - ,. + 2 + EE 1 + ~2 + 1 + 1)2 dE dG d'fj; 

with the vectors g and TJ defined by 

P = (p~) ~ + MG, 
~ = k 1 w, 

dg = (E I M)2 dD., 

P= (p~)~+M'fl. 
g~ = Yj~ = 0; 

d'fl = (E 1 M)2 dO. 

(5) 

Unlike the Born approximation formulas, the 
expression (4) cannot be obtained from the corre­
sponding expression 1 for the bremsstrahlung of a 
proton diffractively scattered by a black uncharged 
nucleus by substituting - p~ p, - k for p, p,' k. 
The reason is that in the extreme relativistic 
limit the diffracted waves hardly overlap at all 
in bremsstrahlung but overlap strongly in pair­
production. 

If we assume a finite size for the nucleon, 2 

a form-factor will appear in Eq.(4). We have not 
included any effect of the anomalous magnetic 
moment of the nucleon. 

l A. I. Akhiezer, Dokl. Akad.Nauk SSSR 94,651 (1954). 
2 I. Ia. Pomeranchuk,Dokl. Akad. Nauk SSSR 96, 265 

and 481 (1954). 

Translated by F. J. Dyson 
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I F the energy difference between excited and 
ground state is greater than 2 mc2 (m is the 
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electron mass), then a nucleus in the excited state 
may decay by emission of an electron-positron pair 
togetherwith a photon. We call this process 

The Feynman diagrams for this process are 
analogous to those appearing in the calculation 1 

of internal Compton effect involving the atomic 
electrons. We maintain the notations of the earlier 
calculation 1, except that E + , E_ , p + , p_ now de­
note the energy and momentum of the positron and 
electron. 

the internal Compton effect in pair conversion. 
We exhibit below the formulas for the relative dif­
ferential probability of this fi"OCess (i.e., the ratio of 
the absolute probability of internal Compton effect 
in pair conversion to the probability of a simple 
radiative transition), calculated in Born approx­
imation. 

Here (p+ p_) = p p - E+ E_ is the scalar product 
of the 4-vectors +p; and P-· The z-axis is taken 

along the direction of k, tJ ± are the polar angles 
of the vectors p ±, and 

The relative differential cross-section for a mag-

netic 2i-pole transition is 

The relative differential cross-section for an 
electric 2i -pole transition is 

d (3 ) = 4 (2j + 1) a. 2p+p_k (_!!_)2i-!-I 1 f•) [m2 + (p_k) + (P+P-) ] 
yl (27t)a (i + 1) p t:.E (P2- t:.£2)2 l ~ (p_J. )2 (p_l.) (p+k) 

X [ike:+- jke:+ ~ cos (kP)- jkp+ !:.: cos (p+P) + k~~2 P+ ((j + 1) cos (kp+) 

+ (j -1) cos (kP) cos (p+P))J + 2 [m2(;+~;k) + (p;~)~;~k) ] 

X [ jke:_- jke:_ ': cos (kP)- jkp_ ~ cos (p_P) + p_ 1:~22 ((j + 1j cos (p_k) 

+ (. 1) (kP) ( P))J 2 [ m2 + m2 + (P+P-) + (p+ + p_, k) J 
1- cos cos P- + (p_k) 2 (p+k)2 (p_k) (p+k) 

X [je:+e:-- je:+P- !:.: cos (p_P)- je:_p+ !:.: cos (p+P) + P+P-~22 ((j + 1) cos (P+P-) 

. J 2 [. 2 2 . t:.E + (J- 1) cos (p+P) cos (p_P)) - (p_k) ;e:_ -- ;e:_p_ -p cos (p_P) 

p:__t:.£2 1 2 [ !:.£ 
+ ~ ((j -1) cos2 (p_P) + 2) - (p+k) je:;_- 2je:+P+-p cos (p+P) 

p~l:.£2 . J 2m2k2 [ . . t:.E 
+~((;-1)cos2(p+P)+2) + (p+k)(p_k) ;-2;-----p-cos(kP) 

+ ~:~ ((j- 1) cos 2 (kP) + 2)] + [j- (2j + 1) ~2 J [ (p~:) 2 (p+P) 

+ m2 ( P) , m2 + (p+k) + m2 + (p_k) + 2 (P+P-) [(P+P-) + (p+ + p_, k)- m2]]} 
(p+k)2 P- --r- (p_k) (p+k) (p+k) (p_k) 

xsin~_d~_d=o~+=d~k=d~e:+~·--------------------------------~ 
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These formulas become much simpler in the 
extreme relativistic limit. After integrating over 
angles, the relative differential probability be­
comes identical for magnetic and electric transitions, 
namely 

dy._(2j+1)a2 
I - ~ (<.7t)2 

The ratio of the differential probability for 

internal Compton effect to the probability for 
ordinary internal pair-conversion is roughly given 
by 

provided that l'lE-K >> m. 

In conclusion the author thanks I. S. Shapiro 
for valuable advice and assistance. 

1. E. G. Melikian, J, Exptl, Theoret, Phys. (U.S.S.R.) 
31, 1088 (1956); Soviet Phys. JETP 

Translated by F. J. Dyson 
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WE consider a system composed of a large num­
ber of interacting Fermi-particles. It is to be 

expected that among the excited states of the sys­
tem there will exist states whose energy can be 
expressed as a sum of energies of quasi-particles. 
The energy of a quasi-particle of momentum p is 

e: p = Vo (p -Po), 

where p 0 is the momentum at the top of the Fermi 

sea of the quasi-particles, v = v (p ) is the velo-o 0 
city of a quasi-particle at the Fermi surface, p > p 

for quasi-particles and p < p 0 for holes. 

The momentum Po need not coincide with 

0 

the limiting momentum p ~ determined by the density, 

P~ = (3~n)'la, (fi = 1). 

It is easy to see that the quasi-particles have an 
attenuation proportional to (p-p 0 ). 2 This means 

that for p 0 not close to p 0 an excited state of a sys­

tem with strong interactions cannot he described in 
terms of quasi-particles. As p --+p 0 the state be-

comes describable in terms of quasi-particles even 
when the interaction is strong. We shall prove that 
the momentum distribution of the particles in the 
ground state has a discontinuity at p = p 0 , for any 

kind of interaction. This result refers to the distri­
bution of particles and not of quasi-particles. 

The one-particle Green's function is defined by 

(l) 

= i <Te!Ht, 'I" (rl) e-iH (t,-t,) 'I"+ (r2) eiHt•>, 

where the expectation value is taken in the ground 
state of the system IJI ( r) =~a e i pr, and a is the 

p p . 

annihilation operator for a particle of momentum p. 
If there is no external field, G is a function only 
of r =I r 1 - r 2 1 and T= t 1 -t2 • Expressing Gas a 

Fourier series in coordinate space, we find 

This equation connects the function G (p, T) with 
the momentum distribution of particles in the ground 
state, which is 

Writing 

G (p, -r) = ~ G (p, e:) e_;e-, de: J 21t, 

we obtain 


