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sists of the fact that under otherwise equal condi
tions the pencil is narrower in the magnetic field 
than without it. This follows from the fact that 

--~ sin2 L (z- ~)_ < (z- Y)2 £2 ~ ., , 

and means y 2 (L) < y2 (0) if L =I 0. This is also 

understandable because in the intervals between 
collisions in the magnetic field, the scattered 
particle moves in a helical path and departs from 
the axis of the pencil less than in the absence of 
the field, when it moves along astraight line. 

The other effect is the following. In the absence 
of the magnetic field, the mean value of the angle 
<:p- <:p 0 is equal to zero. In this case we have a 

radial "polarization" of the pencil. In the magnetic 
field, 

This means that in the magnetic field, the axis of 
polarization is turned by this angle. 

1 B. Rossi and K. Gresisen, The interaction of cosmic 
rays with matter, p. 45 (Russian translation), 

Translated by R. T, Beyer 
90 

s-d l:xchange in Ferromagnetic Metals 

F. M. GAL'PERIN 
(Submitted to JETP editor October 22, 1956) 

J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 381-382 
(February, 1957) 

L AND AU first pointed out the possibility of the 
fundamental phenomenon of "submagnetization" 

of the external s-electrons of a ferromagnetic crys
tal in the exchange. "field" of the internal d-elec
trons of the atoms, as a result of exchange between 
the electrons under consideration (s-d exchange). 

Vonsovskii developed in detail the theory of s-d 
exchange. His results contain exchange integrals 
between s- and d-electrons of a single atom (l 0 ) 

and of neighbor atoms (/), and also the transport 
integral of an s-electron. In the present state of 
the theory, these integrals cannot be calculated. 

Consequently, as the same author pointed out, a 
quantitative comparison with experiment is not 

possible; the theory gives only a qualitative 
explanation of many phenomena 1• 

The aim of the present work is to show that the 
integrals mentioned can be found by an empirical 
method, and that substitution of their values in 
Vonsovskii' s relations for pure ferromagnetic 
metals 1 •2 gives satisfactory agreement with ex
periment. 

We make the simple and natural assumption that 
the s-d exchange interaction depends on the inter
electronic distances and on the number of elec
trons participating in the interaction. As an ex
ample, we consider the a~proximation of tight 
binding of the s-electron -3 • In this case, an s
electron spends most of the time in an s-state at 
distance R from the nucleus of some atom, and s 
the d-electrons spend most of the time at a dis-
tance R d from nuclei of atoms, where R s and R d 

are the radii of the s-and d-shells, respectively, 
of an isolated atom. Under these conditions the 
minimum distances between nearest s- and d
electrons in a single atom and in neighbor atoms 
(along a straight line connecting the nuclei of the 
atoms) are, re.spectively, R 8 -Rd and r 1-R, where 

R = R s + R d' r 1 is the distance between an atom 
and the atoms nearest to it (first c.s., c.s. =co
ordination sphere), (r 2 - R) is the distance be
tween an s-electron and the next nearest d-elec
trons, r 2 is the distance between an atom and the 
next nearest atoms (second c.s.). In order to pre
serve the accuracy with which r 1 and r 2 are usu

ally measured, the magnitude of R is computed 
with the same accurac;r (to the fourth decimal 
place) by our relation ; the values of R thus ob
tained differ by no more than I% from those cal
culated by Slater's method 5 • 

According to the sign of r.- R, the metals di
vide into two groups: Co fafls in group I [(r ./R) 
<I], Ni (Dy and Er) in group 2 [(r /R) > I], fi'e(Gd) 
with respect to its first c .s. in graup I, where 
i =I for Ni (second c.s. not taken into account be
cause of the large distance of the next-nearest 
atom: r2 /r 1 = l.4I4), i =I, 2 for Co and Fe 
(second approximation); i =I, 2 for Co (r2 ""r 1), 

i =I for the other metals (first approximation); 
i =number of the c.s. 

We postulate that the exchange integral/ is 

(I) 

here and hereafter, the upper sign refers to group 
I, the lower to group 2. We denote by / 1 the inte
gral/ in first approximation. 
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The exchange integral/ 0 is similarly expressed: 

(2) 

By reversing the sign before /).£ in (1) and substi
tuting (l) in our relation 

mp/ MB = Nd(f)- ns + 2: (1 =f !:J.Ei); (3 ') 

± 0 065 (Nd- 2/e)]; i = 1 for Ni and Fe,i = 1. 2 for Co, 

(2 ~ we find the paramagnetic atomic magnetic moments 
m • By differentiating m with respect to pressure 

p -

=t= (Nd/2-1 )je]}, P, and by assuming that under hydrostatic com-
pressioiii only the interatomic distances and the 
moments m change, we find where N d is the number of unpaired d-electrons 

in the atom, e = 1 for Co and Ni, e = 2 for Fe, 
e = 7 for Gd. In the tight binding approximation 

being considered, we neglect the transport inte
gral of the s-electron. Upon evaluating (2) and 
(2 '), we find I 0 = ±0.13 eN d(f/N d(f)- 1; the 

minus sign applies to Fe, Ni and Co, the plus 
to Gd. 

By substituting (1) and (2) in Vonsovskii's re
lation (1.13) 1, we find the atomic magnetic mo
ments 

1 dm . xl0 -- --···- = ± 0 0641 -- (n r - n r ) m dP · mJ2 1 1 2 2 , 
(4) 

where x is the compressibility • It follows from (4) 

that dm/dP < 0 for Gd and Fe and > 0 for Ni. We 
furthermore get fot exchange energy of the "3/2-
power law" of Bloch and Moller 

(5) 

Here e == m0/M 8 for group 1, e = (m 0 /M ) + 1 for 
group 2, where m 0 is the integral part of the 

Properties of pure ferromagnetic ~rwetals. 

Metal Gd 

n1(r1, A) 6(3 .561) 

nz(rz, A) 6(3. 629) 

R, A 3.566 
Nd(f);nd(f) 1(7);/tr) 
A£1(!1£2) -0.02( Q24) 
L t1E. 

. l 0.22 
l 

I(! 1); IjK 1.22(0,98) 
/ 0 ; Ii K 

{ calc. 
1,06;-1 

mjMB 7,06 
ex pt. 7.10 

tnp/MB 
{ calc. 

2 
ex pt. 

1 dm em { calc. -----107 --
m dP kg ex pt. 

A/k 
{ calc. 5 

ex pt. 4.5[6 ] 

eoK { calc. 266 
ex pt. 289 

atomic moment m (0, 1, 2 and 7 M 8 for iH, Co, Fe 
and Gd respectively). 

Ni Co Fe 

12(2 ,4868) 6(2.499) 8(2.4777 ; 

6(2. 507) 6(2,8610 

2,4082 2.5382 2.7332 
2; 8 3; 7 4; 6 

0.60 -0.15(-0, 12) -1.31(0.49) 

0.60 -0.27 -0.82 

0.40(0.40) ;1 0.73(0.73); 1 0.18(0.69); 1 
-0.260;-1 -0.195;-1 -0.347; -1 

0.605 1.720 2.220 
0.605 1. 715 2,217 

1.6 3,27 3,31 
1.6 3,27 3.37 
30 -1 -5 
60 - -6 
230 946 177 

226[8 ], 220[") - 207[?j, 183[8] 
642 1385 1043 
631 1393 1043 

The Curie point is calculated by a relation simi
lar to (1.8) of Ref. 1: 
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El = 2nAdd fAstl I 1-a/ nl'[nlr]) 

(the quantities in square brackets are those for Gd, 

determined, according to our hypothesis, by s-f ex
change), where Asf=;-72(1- N1)(10 +nl 1), Add 

= 72(1 + N /HI '0 + nl ), o = 0.15 x (I 0 - 411) 2 n s 

7l1n d(f)' cf. the Table and (22.1) of Ref. 2. 

* The same value of m is given by our relation m/M B 

m/ MB =Nd(f)-ns+ 1j2(Na=F 1)/. 
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B OHR and Mottelson 1 ' 2 have interpreted the 
rotational levels of nuclei with spin 1/2 by 

starting out from the assumption that the a-projection 
of the total angular momentum of nucleons on the 
axis of symmetry of the nucleus is an integral of 
the motion. We can conceive of a different inter
pretation of the rotational levels of the nuclei, 
however, if we start from the following two assump
tions: l) there are absent from these nuclei the 
2 I states which are considered according to a 
coupling scheme which corresponds to the case of 
b coupling according to Gun d. 3 Then in the first 
approximation, the levels with total momenta 
I = K ± 1/2 are degenerate (K is the rotational 
quantum number); 2) this degeneracy is taken into 
account by the introduction into the Hamiltonian of 

Bohr and Mottelson of an interaction of the type 

H Rs =-(A. I mc2) s[(vUvcoll), 

where A is the dimensionless phenomenological 
constant which has the same meaning and value as in 
the usual nuclear spin-orbit coupling (see, for 
example, Ref. 4); s is the spin vector of the nucleon, 
U (r) = self-consistent potential of the nucleus, 
mc 2 =rest energy of the nucleon, v coil =velocity 

with which the nucleon takes part in the 
collective motion. Introduction of the interaction 
(1) into the Hamiltonian of the system can be justi
fied if we start out from the model of independent 
particles which move in a rotating self-consistent 
field. 5 •6 

First, we shall make clear the meaning of v 11 c 0 • 

Consideration of the rotation of the field, as is well 
known, leads to the appearance in the Hamiltonian 
of the system (which is written relative to the ro
tating system of coordinates) of a perturbation of 
the form H '= -1r w L , where w is the fre-

x X X 

quency of rotation of the field U (r) relative to the 
.x-axis, perpendicular to the axis of symmetry of the 
nucleus, L x is the pr.ojection of the orbital momen-

tum of the nucleons on the corresponding axis. The 
unperturbed Hamiltonian H 0 describes the motion 

of particles in the non-rotating field. We can 
write the perturbed wave functions, with accuracy 
up to first order in w x , in the form 

{2) 

where tjJ 0 is the unperturbed wave function, which is 

real for the I state; tjJ 1 is also a real function. 

Then, with the same accuracy as (2), we get an ex
pression for the current density: 

j = cf~Vcoll • vcoll = (hwxf m)grad (ljllftlio)· {3) 

We can interpret this expression that for a rotation 
of the nucleus, each nucleon acquires an additional 
1rrotational velocity v coil. 

We now make clear the meaning and origin of 
the interaction (1). We represent thew ave function 
(2), with corresponding accuracy, in the form 

(4) 

Then the Schrodinger equation in the new repre
sentation has the form 


