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TABLE 

Computed values 
::f; 

;f 
E. ~ 

Nep NeM --... 
"" ;;'= 
~ 

1014eV 6.0 3.8·104 4,5·103 

5.33 2,5·104 4,2·103 

t016eV 5,2 6,7·106 9.6·105 

5.30 4,5·106 9.0·105 

4.7 9.2·108 2.1·108 

';IOIBeV 
5.14 6.2·108 1. 8·108 

particles with energies E "" 10 18 ev, but the data 
on the magnitude of the barometric effect at sea 
level for showers from primary particles of the 
same energy 5 agree better with the calculations 
based on Landau's theory. 

The results of the calculations of the altitude 
dependence depend slightly on the energy spectra 
of the created mesons, but are very sensitive to 
the amount of energy remaining with the nucleon; 
therefore the results present a weighty argument 
that in the region E > 5 x 1012 ev (at least, up to 
E"" 10 14~10 16 ev) the nucleon in collisions with 
nuclei of the atoms of the air loses, on the average, 
only about 1/3 of its energy. Conversely, for the 
region of very high energies (E ""10 18 ev), we 
conclude that a significant breaking down in the 
energy of the nucleon takes place in nuclear colli~ 
sions. 

The authors express their gratitude toN. S. 
Strunin and E. G. Natrusov who carried out a 
large part of the computations. 
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} N recent years, detailed studies have been made 
on the possibility of introducing relativistically 

invariant cut-off form factors in the Schrodinger 
equation or in the equation of motion described in 
the Heisenberg representation. 1- 3 It was shown 
that in all cases, multi-time equations become 
non-integrable, while the co~ditions of macro­
scopic causality are violated -•. However, we can 
attempt to introduce the form factors directly into 
therelativistically invariant equation for the S-matrix 
which was obtained earlier in the theory with local 
interaction. Wataghin and Rayski 5 suggested the 
construction of the S-matrix, juxtaposing to each 
angle of the Feynman diagram (which corresponds to 
the theory with local interaction) a form factor while 
each internal line of this diagram is a causal 
function Dc or~ c 5 • 

Analytically, this suggestion can be formulated 
by writing the S matrix in the form*: 

00 

S = "' (ie)n 
4..J n! 

(l) 

n=o 

+co 

X ~ P {cp• (x1) A (x~) cp (x;) ••• cp* (xn> A (x~) cp <X::n 
-co 



314 LETTERS TO THE EDITOR 

Actually, we can apply to the S matrix (l) the 
theorems of Wick on the reduction of the P derivative 
to the N derivative • The operator packets are 
expressed by De and !'!. c functions just as in the 
theory with local interaction. We cannot take the 
operator packets qJf' (xi ) and (xi ) into account, 

since the corresponding matrix elements are equal 
to zero; this can easily he shown by a calculation 
in momentum space. However, it is not difficult 
to show that the S matrix (l) is not unitary, and, 
consequently, cannot be interpreted as thescattering 
matrix.** 

It was shown in Ref. 6 that it is possible to 
satisfy· the unitarity condition and macroscopic 
causality simultaneously if we add to the original 
Hermite "Lagrange function" L (x 1x 2 x 3 ) an 

anti-Hermitian part which is expressed in the form 
of an infinite series in powers of the interaction 
constant. It will be shown below that we can 
construct a unitary and macroscopically causal 
expression for the S matrix without the introduction 
of additional series, the physical meaning and 
convergence of which are not explicit. For this 
purpose, we write down the expression for the 
S matrix in the form: 

""' +oo 
S ~1(-i)n \ 

= .LJ ny- .) p• {H1H2 ... Hn} d4 (xi x2 ... xn), 
n=o _ 00 

Jl 1 == Jl (x 1) = - ie ~ cp• (xi) A (x2) cp (xs) (2) 

3 

X ~ F 1 {x1x2x3) 8 (x1 - x) d4 (XIX2Xs) 

i= 1 

(for the definition of the operator p *, see below). 
If we write the expression for the operator Hi in 

the form 
I" • 

H1 =- ie ~ cpp (x1) Ak (x1) cpq (x1) {ID1 (k + q; q) 

+ 1Dz (p; q) +IDs (p; p- k)} d4 (pqk), 

• ) • ( ) -ipx 1 iqx · 
cp P (x1 = cp p e ; cpq (x;) = cp (q) e t ; 

Ak (x;) =A (k) /kxi; 

[ qJf' (p ); q:J (q); A (k ); <I> i are the Fourier components 

of the operators cp* (x ); cp(x ); A (x) and the form 
factors F i ] , then we can apply the same rule for 

the caleulation of the matrix elements (2) as in the 
theory with 1ocal interaction. We thus obtain for 
the matrix element of the energy eigenvalue of 
the field A: 

~ <k I Ak (x1) Ak (x2) I k1) <O I p• {cp;. (x2) cpq, (x1)} I 0> (O I p* {cp;., (x1) cpq• (x2)} I O) (3) 

X {IDI (k + QI; QI) + ID2 (Pr; Qr) +IDs (pl; P- k)} {IDI (k + q2; Q2) + 

+ ID2 (p2; Q2) +IDs (p2; P2- k11)} d4 (XIX2PIP2QIQ2)· 

In space-time regions 

(,\ is a constant which defines the characteristic 
dimension in the theory), the operator P* does 
not differ from the known chronological operator P, 
since in these regions the operator P in (2) can be 
defined in a relativistically invariant fashion. 1 

In microscopic regions e 2 .. ~ ,\ one can generalize 
' I 

the definition of the operator P in relativistically 
invariant fashion. This generalization is, to a 
marked degree, arbitrary. Thus, if we set 

p* {H1 Hj} = I/2 [H1 H1 ]+ + I/2 e;i (H1 Hi]_; 

[Hi Hi]±= Hi Hi± H1 Hi; 

(4) 

I+ 1 for t71.;;;; 0; (ti-t 1) > 0; 

<1 e·(x 1 -x)=~ 0 for e~1 >0; 
~ -1 for e~1 .;;;;o; (t 1-t1)<0; 

then 

(0 I p* {cpp (x1) cpq (x2)} I 0) = 

= I/2 (0 I (cp~ (x1) cpq (x2)J+ I 0) 

+ If2 e • (x1 - x2) (0 I [cp~ h) cpq (x2)L I 0) 

= _If2i (1 + e• (x2 -x1)) t..-;J- (x2 -x1) 8 (p- q) 

-IM (1 - e • (x2 - x1)) t..;;(x2-x1)8 (p-q) 

and Eq. (3) isrewritten in the form: 

~(k IAk (x1 )Ak (x2)lk>Kc(x2 

- x1; k) Ac (x1 - x2 ; k) d4 (x1x2); 

Kc (x; k) = Ij2 (1 + e* (x)) A+ (x; k), 

•+ lj2 (1- e• (x)) A:- (x; k); 

A± (x; k) = ~ t._± (q) {IDI (k + q; q) 

+ ID2 (q; q)+ IDa (q; q- k)} eiqxd'q. 

It follows from the properties of the form-factors 
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F i that the commutator [ Hi H j ] -"" 0 in the macro­

scopic regions e T j > > ,\ 2 , i.e., we can replace 

f'!'. by f .. in all regions I e~ ·I > > ,\ 2 and, conse-
'1 'I '1 

quently, the function ~f j will contain only positive 

frequencies for t. > t. . In other words, the 
' I 

S matrix (2), in macroscopic regions of space-time, 
satisfies the conditions of causality. The unitarity 
of (2) can be shown in the same way as for the 
S matrix without the form factor, where the operator 
P* can always be replaced by P 3 • 

We can also determine P * by the normal product 
in correspondence with wick's theorem: 

From the viewpoint of computation, such a definition 
of the operator P* is much more satisfactory than 
(4).** 

In conclusion ,I wish to thank Prof. D.I. Blok­
hintsev for his interest and discussions. 

*As an example, we consider the simple case of the 
, interaction of the scalar charged and neutral fields cpand A. 

**The unitary condition ss+ = 1 in the second approxi­
mation of perturbation theory reduces to the re~uirement 
that all the matrix elements of the expression 5 2 + s2 

+ S 1 S 1 + vanish. In a theory with a form function, this 

is impossible. We can establish this fact by considering, 
for example,the matrix element of the eigenvalue of the 
energy of the field A or Cf4 3 

*One can express f * (x) in the form of an exponent with 
dependence only on x ,as a consequence of which, calcu­
lation of the integrals in the matrix elements presents 
well known difficulties. 7 

1M. A. Markov, J. Exptl. Theoret. Phys. (U.S.S.R.) 25, 
527 (1953); V. S. Barashenkov, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 32, 566 (1957). 

2 P. Kristensen and C.Moller, Det. Kon. Dan. Vid. 
Selsk, Me d. 27, 7 (1952) ; C. Hayashi, Progr. Theor. Phys. 
10, 533 (1953); ll. 226 (1954). 

3 V. S. Barashenkov,Dissertation,1955. 
4 E. C. G. Stueckelberg and D. Wanders, Helv. Phys. 

Acta 27, 667 (1954). 
5 G. Wataghin, Nuovo Cimento 10, 1602 (1953); J. 

Rayski, Proc. Roy. Soc. (London) 206A, 578 (195.1). 
6 B. M. Medvedev, Ookl. Akad. Nauk SSSR 103, 37 

(1955). 
7 D. Yennie, Phys. Rev. 80, 1953 (1950); H. Shimazu 

and·O. Hara, Progr. Theor. Phys. 9, 187 (1953)'. 

Translated by R.T. Beyer 
77 

An Experiment on the Measurement of the 
Viscosity of an Expanded liquid 

A. P. TOROPOV AND A. I. KITOVA 

Central Asia State University 
(Submitted to JETP editor September 10, 1956) 

J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 372-373 
(February, 1957) 

S TUDY of the viscosity of expanded liquids 
would be of considerable interest for the devel­

opment of the theory of viscosity. In the litera-
ture there is not indication of work in this field. 
We therefore set ourselves the task of investi­
gating whether such measurements could be 
carried out. Reported below are some results 
of experiments we performed. 

The substance chosen for investigation was 
benzene. The sample used had physical constants 
that agreed fully with handbook values. The ben­
zene was put through an additional distillation 
just before the experiments for removal of ab­
sorbed water and for partial degasification, and the 
first and last fractions were rejected. Since we 
did not undertake to attain maximum expansion 
of the liquid complete degasification of the ben­
zene was not carried out. 

The method of Stokes was chosen for making the 
measurements as being easiest to apply. For 
manufacture of glass beads of the necessary dia­
meter, we adopted the method of fusion of glass 
powder granules in the flame of a gas burner. 

This method was used by Bloomquist and Clark 1; 

we modified and simplified their method to some 
extent. For our task we selected a few beads of 
3C-5K molybdenum glass of diameter 0.05 to O.<Xi 
mm, of accurately spherical shape and containing 
no gas inclusions. Since glass beads in benzene 
are hard to see, the ones chosen were coated 
with aluminum by evaporation in a vacuum. The 
density of the spheres was determined by the 

method of free flotation and was 2.268 g/cm3 at 
25qC. 

The experiments on measurement of the vis­
cosity of the expanded benzene were carried out 
in cylindrical ampoules, made of 3C-5K molyb­
denum glass, of inside diameter 6 mm. At the 
ends of the ampoules were intakes, 150 mm apart. 
The inside diameter of the intakes was about 1 mm. 
The ampoule was filled with benzene in such a way 
thaf after sealing, a bubble of gas remained in it. 
The glass bead was inserted into the ampoule 


