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It is shown that the hydrodynamic description of quantum systems imposes some serious 
restrictions on the dimensions of the investigated system. A result of this is that the de
scription is not valid for atomic nuclei or multiple creation of mesons at the initial stages 
of expansion of the meson liquid. 

T HE hydrodynamic description of motion assumes 
that it is p<Bsible to assign to each element 

of the considered medium an energy density£, a 
momentum density g, a medium density p and a 
pressure p, which are functions of coordinates and 
time. The whole medium has to be broken up into 
physically infinitely small volumes ~3 , and the 
time into physically infinitely small intervals I!J.t. 

It is only formally that one can consider the 
space-time lattice thus formed, as having infinitely 
small interpoint distances. Actually, these dis
tances are subject to lower, as well as upper bounds. 
The upper bounds are trivial: l!!x << L, I!J.t << T, 
where L is the dimension of the system and T is a 
time, characteristic of the considered process. As 
far as the lower bounds are concerned, the classical 
and the quantum theories give different restrictions. • 
We are going to consider the restrictions character
istic of a quantum system. 

Let ~3 be the volume element, with ~ =Lin, 
n >> l. The momentum of the element will be g~ 3 , 
On the other hand, the momentum dispersion I!J.p 
related to the localization of matter in the interval 
~.will be> Til~. In order that it be possible 

to describe the motion with a momentum density 
g, it is required that the mean value of the momen
tum g~3 be larger than the possible dispersion, 
i.e., that g~3 »Til~ or 

(l) 

In the nonrelativistic case, the energy density is 
£ = g 2 /2p; hence 

(2) 

In the relativistic case£"" gc, i.e., 

(3) 

These relationships for the energy can also be 
obtained from the relation I!J.EI!J.t > 1i: for I!J.t ""~lv 
or I!J.t ""!!J.xlc respectively, let us note that any 

more detailed model consideration can only in
crease the values of the right hand sides of these 
inequalities. 

We now apply these inequalities to two definite 
problems. 

A. HYDRODYNAMIC DESCRIPTION OF THE 
ATOMIC NUCLEUS 

In this case, the characteristic dimension is the 
nuclear radius L = R = r 0A 113, r 0 = 1.3 x 10- 13 

em, A =atomic weight of the nucleus. The matter 
density iis mAIV, where m is the nucleon mass and 
V = 4nR 3 13. 

Let us: now make use of the inequality (2) and 

apply it to the total nuclear excitation energy 
E "'£f due to the hydrodynamic motions. It then 
follows from (2) that: 

E ~ nS1;;2 ~ - _!_ (47t)2 s ~ 4-5/3 (4) 
~ 2R8 mA- 2 3 n 2mr2 ' · 

0 

We have Ti 2 /2mr 0 2 "'10 mev. Even if the nuclear 
radius iSI divided only into three parts (n = 3), we 
still get a tremendous excitation energy - so 
large that the nucleus cannot exist as a whole (for 
A = 200, E >> 80 mev). Therefore it is not possible 
to expect, for instance, that the moment of inertia 
of a nucleus computed from the motion of an ideal 
liquid in an ellipsoidal container have any relation 
to the actual situation. 

The quantization of the hydrodynamic rotational 
motion of the nucleus will not help, because the 
most important parameter of the problem- the 
moment of inertia- is calculated from the classi
cal theory. This does not mean that one cannot 
at all speak of a rotation of the nucleus. In the 
quantum theory, the reciprocal of the moment of 
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inertia, a = 1/l, is an operator. In order to be 
able to speak of a rotation of the nucleus it is 
necessary that the dispersion !5i£ 2 be much 
smaller than a2 , i.e., there must be a certain 
''rigidity" of the nuclear shape. 

B. HYDRODYNAMIC DESCRIPTION OF MULTIPLE 
MESON CREATION 

Recently, attempts have been made 1"3 to con
sider the multiple meson creation in the collision 
of two relativistic nucleons as the JrOCess of ex
pansion of the excited meson liquid. When a large 

number of mesons is present, it can be expected 

that the quantization will have no sizable effect, 
because the mesons are subject to Bose statistics. 
The restrictions for such a classical description 
come, however, from the fact that one has to 
apply this concept not to the system as a whole, 
but to small space-time regions. 

In the case coneidered here, we are talking 

about a meson liquid occupying the volume of an 
oblate ellipsoid: V = (47T/3)(7i/p.c) 3 2mc 2/E 
(here p. is the meson mass, m- the nucleon mass 
and E - the nucleons' energy in the center-of-mass 
system). The minor half axis of the ellipsoid is, 
taking into account the Lorentz contraction, equal 
to L = (Ti/p.c)mc 2/E. Because of the large mag
nitude of this contraction, we can restrict our
selves to a one-dimensional problem. Instead of 
(3), we get for the energy density per unit length: 

If we substitute the value of L, we find that 

(6) 

This inequality shows that in the initial stage 
of the Jrocess immediately following the nucleon 
collision, the hydrodynamic description is abso
lutely inapplicable: in this stage the meson 
liquid which occupies the ellipsoid undergoes 
quantum fluctuations of momentum and energy. 

The further behavior of this liquid becomes 
quite indefinite from the hydrodynamic point of 
view, and the ellipsoid can break into "drops". 
One can therefore think that the process of mul
tiple meson creation is actually a purely quantum 
effect. 

If one still assumes that, in this quantum phase, 
the motion is a more or less regular one-dimen
sional expansion of the ellipsoid, it is easy to 
show that, in order that the hydrodynamic descrip
tion be valid, it is necessary that the energy of 

the primary nucleons be greater than 1014 - 10 15 

ev (number of layers n "' 10, Ap/p "' 10%). The 
same numerical conclusion is reached when one 
considers the final stages of the expansion, when 
L becomes comparable to Ti / p.c and the motion be
comes three-dimensional. 
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